材料工程与机械制造

人工槽模拟GH4169涡轮盘表面裂纹缺陷的微磁检测

  • 胡博 ,
  • 于润桥 ,
  • 徐伟津
展开
  • 1. 南昌航空大学 无损检测技术教育部重点实验室, 南昌 330063;
    2. 中国石油川庆钻探公司 安全环保质量监督检测研究院, 广汉 618300
胡博 女, 博士, 讲师。主要研究方向: 电磁无损检测, 电磁场数值计算。 Tel: 0791-83863759 E-mail: cumthubo@163.com;于润桥 男, 硕士, 教授。主要研究方向: 电磁无损检测, 无损检测仪器开发。 Tel: 0791-83863759 E-mail: yurunqiao@163.com;徐伟津 男, 硕士, 工程师。主要研究方向: 无损检测。 Tel: 0838-5152134 E-mail: 630051822@qq.com

收稿日期: 2015-04-09

  修回日期: 2015-06-06

  网络出版日期: 2015-06-09

基金资助

国家自然科学基金 (51265041, 51565043); 江西省青年科学基金 (20151BAB216016); 江西省教育厅青年科学基金 (GJJ13488)

Micro-magnetic NDT for surface crack defect in a GH4169 turbine disc simulated by artificial groove

  • HU Bo ,
  • YU Runqiao ,
  • XU Weijin
Expand
  • 1. Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China;
    2. Safety Environment Quality Surveillance and Inspection Research Institute, CNPC Chuanqing Drilling Engineering Co., Ltd., Guanghan 618300, China

Received date: 2015-04-09

  Revised date: 2015-06-06

  Online published: 2015-06-09

Supported by

National Natural Science Foundation of China (51265041, 51565043), Youth Science Foundation of Jiangxi Province (20151BAB216016), Youth Science Foundation of Education Department of Jiangxi Province (GJJ13488).

摘要

针对航空发动机涡轮盘表面裂纹缺陷,提出一种地磁场环境下的微磁无损检测(NDT)方法。磁化试验测得了广泛使用的镍基高温合金GH4169材料的磁化特性曲线,通过磁性分析,证明该材料的相对磁导率略大于空气的相对磁导率,为弱顺磁性物质。理论分析了微磁检测适用于涡轮盘试件的检测原理和缺陷处的磁异常特征,通过对预置人工槽缺陷的涡轮盘试块进行检测,验证了理论分析的正确性。检测结果表明,随着涡轮盘表面裂纹宽度和深度的增加,磁异常的宽度和峰值也相应增加,裂纹宽度相同时,深度越深,或者说深宽比越大,磁异常越明显,且裂纹产生的位置对定位精度存在一定的影响。该微磁检测方法为涡轮盘表面裂纹缺陷的有效检测提供了新的思路,能进一步推广应用于飞机发动机的其他部件,如转子叶片、涡轮轴等,以及飞机机身上具有相似磁学特性的材料的无损检测。

本文引用格式

胡博 , 于润桥 , 徐伟津 . 人工槽模拟GH4169涡轮盘表面裂纹缺陷的微磁检测[J]. 航空学报, 2015 , 36(10) : 3450 -3456 . DOI: 10.7527/S1000-6893.2015.0173

Abstract

This study proposes a micro-magnetic nondestructive testing (NDT) method in the geomagnetic field to detect the surface crack defect in a turbine disc. The magnetization characteristic curve of extensively used nickel base superalloy GH4169 is obtained by magnetized test. It is proved that the relative permeability of the material is slightly greater than the relative magnetic permeability of the air through the magnetic analysis. Thus, GH4169 is a weak paramagnetic substance. The mechanism of the micro-magnetic NDT method suitable for turbine disk specimen and magnetic anomaly characteristics of the defect are analyzed. The correctness of the theoretical analysis is verified through the testing of a turbine disk contained artificial crack defects. Test results show that the width and peak of the magnetic anomalies increase along with the increase of width and depth of surface crack. When the widths of cracks are the same, the deeper the depth, or the larger the deep width ratio, the greater the magnetic anomaly, and the position of crack has a certain influence on the positioning accuracy. The micro-magnetic NDT method provides new thoughts for the detection of surface crack defects of a turbine disc. The method can be further popularized and applied to other parts of the aeroengines, such as rotor blades, turbine shaft and the aircraft fuselage with similar magnetism features.

参考文献

[1] Chen Q, Guo H, Zhang C, et al. Structural optimization of uniaxial symmetry non-circular bolt clearance hole on turbine disk[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1142-1148.
[2] Gao Y, Bai G C, Zhang Y L. Reliability analysis of multiaxial low cycle fatigue life for turbine disk[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1678-1682 (in Chinese). 高阳, 白广忱, 张瑛莉. 涡轮盘多轴低循环疲劳寿命可靠性分析[J]. 航空学报, 2009, 30(9): 1678-1682.
[3] Qian W X, Yin X W, You M Y, et al. Disk low cycle fatigue life prediction based on multiaxial fatigue model[J]. Chinese Mechanical Engineering, 2009, 20(7): 843-846 (in Chinese). 钱文学, 尹晓伟, 由美雁, 等. 基于多轴疲劳模型的轮盘低循环疲劳寿命预测[J]. 中国机械工程, 2009, 20(7): 843-846.
[4] Wang X M, Wang T Y, Zhao Z H. et al. Creep damage behavior for serviced turbine blades and effects of solutioning on blade materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2784-2793 (in Chinese). 王小蒙, 王天佑, 赵子华, 等. 涡轮叶片蠕变损伤行为及固溶处理对叶片材料性能的影响[J]. 航空学报, 2014, 35(10): 2784-2793.
[5] Mu Y W, Lu S. Numerical simulation of fatigue-crack-initation life for turbine disk based on material microcosmic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 282-290 (in Chinese). 牟园伟, 陆山. 基于材料微观特性的涡轮盘疲劳裂纹萌生寿命数值仿真[J]. 航空学报, 2013, 34(2):282-290.
[6] Zhang F G, Zhang Y W, Tao Y. Ultrasonic nondestructive testing of p/m nickel base superalloy[J]. Powder Metallurgy Industry, 2004, 14(3): 16-19 (in Chinese). 张凤戈, 张义文, 陶宇. 镍基粉末高温合金的超声无损检测[J]. 粉末冶金工业, 2004, 14(3): 16-19.
[7] Zhang F G, Guo W M, Chen G S, Ultrasonic nondestructive evaluation of inclusions in FGH95 P/M tested disks[J]. Journal of Iron and Streel Research, 2000, 12(4): 51-54 (in Chinese). 张凤戈, 国为民, 陈淦生. FGH95粉末试验盘坯中夹杂物的超声无损评价[J]. 钢铁研究学报, 2000, 12(4): 51-54.
[8] Beiing Institute of Aeronautical Materials. HB/Z34—1998 Ultrasonic inspection of round cakes and plate of wrought superalloy[S]. Beijing: Aviation Industry Press, 1998: 1-2 (in Chinese). 北京航空材料研究院. HB/Z34—1998变形高温合金圆饼及盘件超声波检验[S]. 北京: 航空工业出版社, 1998: 1-2.
[9] Feist W D, Mueller W. Ultrasonic field modelling for complex shaped aerospace components[C]//Proceedings of the 12th World Conference on Non-Destructive Testing, 1989: 1206-1214.
[10] Shi Y W. New progress on non-destructive testing of aeronautical material and components[M]. Beijing: National Defence Industry Press, 2012: 21-63 (in Chinese). 史亦伟. 航空材料与制件无损检测技术新进展[M]. 北京: 国防工业出版社, 2012: 21-63.
[11] Dong D X, Xiong Y, Liu H N, et al. NDT method for the FGH96 and FGH97 superalloy powder disks[J]. Nondestructive Testing, 2012, 34(5): 76-80 (in Chinese). 董德秀, 熊瑛, 刘怀南, 等. FGH96、FGH97粉末盘的无损检测[J]. 无损检测, 2012, 34(5): 76-80.
[12] Feist W D, Mook G, Taylor S, et al. Non-destructive evaluation of manufacturing anomalies in aero-engine rotor disks[C]//16th World Conference on Non-destructive Testing, 2004.
[13] Abdul-Aziz A, Trudell J J, Baaklini G Y. Finite element design study of a bladed, flat rotating disk to simulate cracking in a typical turbine disk[J]. Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV, 2005: 298.
[14] Kryukov I I, Leont'ev S A, Platonov V S, et al. The experience of application of dye penetrant nondestructive testing in diagnostics of gas turbines[J]. Gas Turbine Technologies, 2006, 7: 10-12.
[15] Kryukov I I, Leont'ev S A, Platonov V S, et al. Testing of discs of turbine rotors of gas compressors with the dye penetrant nondestructive testing technique[J]. Russian Journal of Nondestructive Testing, 2008, 44(8): 542-547.
[16] Shmelev N G, Gorbatsevich M I, Kryukov I I, et al. Inspection of rotor disks of HPT and LPT of TK-10-4 gas-compressor units by the ultrasonic flaw detection method[J]. Russian Journal of Nondestructive Testing, 2012, 48(1): 15-22.
[17] Dubov A A. A study of metal properties using the method of magnetic memory[J]. Metal Science and Heat Treatment, 1997, 39(9): 401-405.
[18] Dubov A A. Diagnostics of steam turbine disks using the metal magnetic memory method[J]. Thermal Engineering, 2010, 57(1): 16-21.
[19] Medina E A, Blodgett M P, Martin R W, et al. Nondestructive evaluation of dual microstructure turbine engine disk material[J]. AIP Conference Proceedings, 2011, 1335(1): 1144-1151.
[20] Guan X, He J, Rasselkorde E M, et al. Probabilistic fatigue life prediction and structural reliability evaluation of turbine rotors integrating an automated ultrasonic inspection system[J]. Journal of Nondestructive Evaluation, 2014, 33(1): 51-61.
[21] Du J H, Lv X D, Deng Q, et al. Progress in GH4169 alloy development[J]. Materials China, 2012, 31(12): 12-19 (in Chinese). 杜金辉, 吕旭东, 邓群, 等. GH4169合金研制进展[J]. 中国材料进展, 2012, 31(12): 12-19.
[22] Hu B, Yu R Q, Zou H C. Magnetic non-destructive testing method for thin-plate aluminum alloys[J]. NDT & E International, 2012, 47: 66-69.
[23] Ren J L, Lin J M. Electromagnetic nondestructive testing[M]. Beijing: Science Press, 2008: 223-229 (in Chinese). 任吉林, 林俊明. 电磁无损检测[M]. 北京: 科学出版社, 2008: 223-229.

文章导航

/