飞行器结构用复合材料制造技术与工艺理论进展
收稿日期: 2015-05-14
修回日期: 2015-05-28
网络出版日期: 2015-06-03
基金资助
国家"863"计划(2014AA032801); 国家"973"计划(2014CB931802)
Progress on manufacturing technology and process theory of aircraft composite structure
Received date: 2015-05-14
Revised date: 2015-05-28
Online published: 2015-06-03
Supported by
National High-tech Research and Development Program of China (2014AA032801); National Basic Research Program of China (2014CB931802)
顾轶卓 , 李敏 , 李艳霞 , 王绍凯 , 张佐光 . 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015 , 36(8) : 2773 -2797 . DOI: 10.7527/S1000-6893.2015.0156
Manufacturing process of composite material is the key to its application, which also plays an important role in the achievement of designed structure. Composite manufacturing is a complex process, which decides the structural reliability, quality and cost of components. Manufacturing technology and process theory of advanced composite materials have made great progress in recent years accompanied by its extensive application in the aerospace field. In this paper, research progress on the manufacturing technology of composite materials for aircraft structure is reviewed. The process theory of composite materials is revealed and the principal methods to control the processing quality of composite materials are analyzed. The prospect of composites manufacturing technology is also analyzed. The review paper is expected to provide some references for the rapid advancement of application level of composite materials in the aircraft structure.
[1] Jia L J, Yang N H, Li Z Y. Digital manufacturing technology for composites[C]//The 14th Annual Meeting of China Association for Science and Technology 11 at the Venue: BBS on Development of Low Cost, High Performance Composite Materials, 2012: 1-5 (in Chinese). 贾丽杰, 杨霓虹, 李志远. 复合材料构件数字化制造技术初探[C]//第十四届中国科协年会第11分会场: 低成本, 高性能复合材料发展论坛论文集, 2012: 1-5.
[2] Zhang P Y. The study of digital technology application for composites[J]. China High-Tech Enterprises, 2013(2): 10-13 (in Chinese). 张鹏宇. 复合材料数字化技术应用研究[J]. 中国高新技术企业, 2013(2): 10-13.
[3] Chen L P, Dai D, Cao Z H. The key technology of digital manufacture for the compound material component[J]. Manufacture Information Engineering of China, 2009, 38(5): 43-48 (in Chinese). 陈利平, 戴棣, 曹正华. 复合材料构件数字化制造的关键技术[J]. 中国制造业信息化, 2009, 38(5): 43-48.
[4] Chryssolouris G, Papakostas N, Mavrikios D. A perspective on manufacturing strategy: Produce more with less[J]. CIRP Journal of Manufacturing Science and Technology, 2008, 1(1): 45-52.
[5] Ye L, Lu Y, Su Z, et al. Functionalized composite structures for new generation airframes: a review[J]. Composites Science and Technology, 2005, 65(9): 1436-1446.
[6] Yuan Z Y, Wang Y J, Wei S M, et al. Digital design and manufacturing technology for aircraft composites component mold[J]. Aeronautical Manufacturing Technology, 2013(10): 43-47 (in Chinese). 元振毅, 王永军, 魏生民, 等. 飞机复合材料构件模具数字化设计与制造技术[J]. 航空制造技术, 2013(10): 43-47.
[7] Liang L Z, Li Y Z. Molding technology of large scale composites panel[J]. Aeronautical Manufacturing Technology, 2012(23/24): 62-66 (in Chinese). 梁禄忠, 李延征. 大型复合材料壁板成型技术[J]. 航空制造技术, 2012(23/24): 62-66.
[8] Lv X, Pu Y W. Digital manufacturing of composites part based on application of advanced manufacturing equipment[J]. Aeronautical Manufacturing Technology, 2014(22): 102-105 (in Chinese). 吕雪, 蒲永伟. 复材制件数字化制造及先进设备的应用[J]. 航空制造技术, 2014(22): 102-105.
[9] Yin J L, Shen J F, Zhang Z D. Path planning for composite fiber placement[J]. Fiber Reinforced Plastics/Composites, 2014(3): 8-12 (in Chinese). 尹纪龙, 沈景凤, 章志东. 复合材料自动铺丝轨迹规划[J]. 玻璃钢/复合材料, 2014(3): 8-12.
[10] Mokadi E, Mitsova D, Wang X. Projecting the impacts of a proposed streetcar system on the urban core land redevelopment: The case of Cincinnati, Ohio[J]. Cities, 2013, 35: 136-146.
[11] Guillermin O. Wind blade manufacturers face balancing act[J]. Reinforced Plastics, 2011, 55(1): 22-26.
[12] Duan Y G, Dong X W, Ge Y M, et al. Robotic fiber placement trajectory planning based on CATIA CNC machining path[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2632-2640 (in Chinese). 段玉岗, 董肖伟, 葛衍明, 等. 基于CATIA生成数控加工路径的机器人纤维铺放轨迹规划[J]. 航空学报, 2014, 35(9): 2632-2640.
[13] Xiong W L, Xiao J, Wang X F, et al.Algorithm of adaptive path planning for automated placement on meshed surface[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 434-441 (in Chinese). 熊文磊, 肖军, 王显峰, 等. 基于网格化曲面的自适应自动铺放轨迹算法[J]. 航空学报, 2013, 34(2): 434-441.
[14] Huan D J, Xiao J, Li Y. CAD/CAM software technology for composites automated placement[J]. Aeronautical Manufacturing Technology, 2010 (17): 40-45 (in Chinese). 还大军, 肖军, 李勇. 复合材料自动化制造技术——复合材料自动铺放 CAD/CAM软件技术[J]. 航空制造技术, 2010(17): 40-45.
[15] Li Y H, Fu H Y, Han Z Y, et al. Varible-angle trajectory planning algorithm for automated fiber placement of two non-developable surface[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(10): 1523-1529 (in Chinese). 李玥华, 富宏亚, 韩振宇, 等. 两类非可展曲面零件自动纤维铺放变角度轨迹规划算法[J]. 计算机辅助设计与图形学学报, 2013, 25(10): 1523-1529.
[16] Yao S, Li M, Gu Y Z. Hot diaphragm forming of carbon fiber composite with C-shaped structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1): 95-99 (in Chinese). 姚双, 李敏, 顾铁卓. 碳纤维复合材料C形结构热隔膜成型工艺[J]. 北京航空航天大学学报, 2013, 39(1): 95-99.
[17] Bian X X, Gu Y Z, Sun J, et al. Effects of temperature and molding rate in hot diaphragm forming process on the forming quality of C-shaped composite[J]. Fiber Reinforced Plastics/Composites, 2013(5): 45-50 (in Chinese). 边旭霞, 顾轶卓, 孙晶, 等. 热隔膜工艺温度与成型速率对C形复合材料成型质量的影响[J]. 玻璃钢/复合材料, 2013(5): 45-50.
[18] Wang S K, Ma X Q, Li M, et al. Four key technologies of structural composites for aircraft applications and its development[J]. Fiber Reinforced Plastics/Composites, 2014 (9): 76-84 (in Chinese). 王绍凯, 马绪强, 李敏, 等. 飞行器结构用复合材料四大核心技术及发展[J]. 玻璃钢/复合材料, 2014(9): 76-84.
[19] Pantelakis S G, Baxevani E A. Optimization of the diaphragm forming process with regard to product quality and cost[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(4): 459-470.
[20] Labeas G N, Watiti V B, Katsiropoulos C V. Thermomechanical simulation of infrared heating diaphragm forming process for thermoplastic parts[J]. Journal of Thermoplastic Composite Materials, 2008, 21(4): 353-370.
[21] Smiley A J, Pipes R B. Analysis of the diaphragm forming of continuous fiber reinforced thermoplastics[J]. Journal of Thermoplastic Composite Materials, 1988, 1: 298-321.
[22] Krebs J, Friedrich K, Bhattacharyya D. A direct comparison of matched-die versus diaphragm forming[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29: 183-188
[23] Mallon P J, O'Bradaigh C M. Development of a pilot autoclave for polymeric diaphragm forming of continuous fiber reinforced thermoplastics[J]. Composites, 1988, 19(1): 37-47.
[24] Li Q F, Wang Y F, Wu C S. Integral design of composite central wing on large passenger aircraft[J]. Fiber Composites, 2013, 30(1): 3-7 (in Chinese). 李庆飞, 王一飞, 吴承思. 大型客机复合材料中央翼整体化设计研究[J]. 纤维复合材料, 2013, 30(1): 3-7.
[25] Wang Y G, Liang X Z. Integral structure and integral manufacture of composite materials[C]//Composite Materials: Innovation and Sustainable Development (I), 2010: 616-623 (in Chinese). 王永贵, 梁宪珠. 复合材料整体结构与整体成形技术[C]//复合材料: 创新与可持续发展 (上册), 2010: 616-623.
[26] Ma X, Yang Z, Gu Y, et al.Manufacture and characterization of carbon fiber composite stiffened skin by resin film infusion/prepreg co-curing process[J]. Journal of Reinforced Plastics and Composites, 2014, 33(17): 1559-1573.
[27] Huang C K. Study on co-cured composite panels with blade-shaped stiffeners[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(5): 403-410.
[28] Kane D M, Sheu C H, Shimazu D M. Co-cured vacuum-assisted resin transfer molding manufacturing method: USA, 7419627[P]. 2008-09-12.
[29] Ma X Q, Gu Y Z, Li M, et al. Properties of carbon fiber composite laminates fabricated by coresin film infusion process for different prepreg materials[J]. Polymer Composites, 2013, 34(12): 2008-2018.
[30] Ma X Q, Gu Y Z, Li M, et al.Investigation of carbon fiber composite stiffened skin with vacuum assisted resin infusion/prepreg co-curing process[J]. Science China Technological Sciences, 2014, 57(10): 1956-1966.
[31] Ma X, Gu Y, Li Y, et al.Interlaminar properties of carbon fiber composite laminates with resin transfer molding/prepreg co-curing process[J]. Journal of Reinforced Plastics and Composites, 2014, 33(24): 2228-2241.
[32] Ma X, Li Y, Gu Y, et al. Numerical simulation of prepreg resin impregnation effect in vacuum-assisted resin infusion/prepreg co-curing process[J]. Journal of Reinforced Plastics and Composites, 2014, 33(24): 2265-2273.
[33] Xu W, Gu Y, Li M, et al. Co-curing process combining resin film infusion with prepreg and co-cured interlaminar properties of carbon fiber composites[J]. Journal of Composite Materials, 2014, 48(14): 1709-1724.
[34] Ma X Q, Gu Y Z, Li M, et al. Investigation of co-LCM process and the co-cured laminar interface of carbon fiber composites[C]//The 11th Conference of Flow Processes in Composite Materials, 2012: 576-585.
[35] Ma X Q, Gu Y Z, Li M, et al. Investigation of the properties of carbon fiber/epoxy composite laminates fabricated with co-RFI process[C]//The 19th International Conference on Composite Materials, 2013: 4493-4501.
[36] Tang J M. Progress in the out of autoclave process in aerospace composites[J]. Spacecraft Environment Engineering, 2014, 31(6): 577-583 (in Chinese). 唐见茂. 航空航天复合材料非热压罐成型研究进展[J]. 航天器环境工程, 2014, 31 (6): 577-583.
[37] Lian W. The application of low cost the autoclave process in aircraft composite structure[C]//Commercial Aircraft Composite Application of International Conference on BBS in 2011, 2011: 1-8 (in Chinese). 廉伟. 低成本非热压罐工艺在飞机复材结构上的应用[C]//2011年商用飞机复合材料应用国际论坛会议论文集, 2011: 1-8.
[38] Kim D, Centea T, Nutt S R. Out-time effects on cure kinetics and viscosity for an out-of-autoclave (OOA) prepreg: Modelling and monitoring[J]. Composites Science and Technology, 2014, 100: 63-69.
[39] Kim D, Centea T, Nutt S R. In-situ cure monitoring of an out-of-autoclave prepreg: Effects of out-time on viscosity, gelation and vitrification[J]. Composites Science and Technology, 2014, 102: 132-138.
[40] Centea T, Grunenfelder L K, Nutt S R. A review of out-of-autoclave prepregs-Material properties, process phenomena, and manufacturing considerations[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 132-154.
[41] Wang X. Research and development on out-of-autoclave prepreg technology[C]//The 14th Annual Meeting of China Association for Science and Technology at the Venue 11: Low Cost, High Performance Composite Materials Development BBS, 2012: 1-6 (in Chinese). 王旭. 非热压罐预浸料成型技术的研究与发展[C]//第十四届中国科协年会第11分会场: 低成本, 高性能复合材料发展论坛论文集, 2012: 1-6.
[42] Geng J. Research on microwave curing process of epoxy resin and composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). 耿杰. 环氧树脂及其复合材料微波固化工艺研究[D]. 南京: 南京航空航天大学, 2013.
[43] Marsh G. Composites help propel GKN aerospace growth[J]. Reinforced Plastics, 2007, 51(7): 26-29.
[44] Xing L Y, Jiang S C, Zhou Z G. Progress of manufacture technology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 1-9 (in Chinese). 邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2): 1-9.
[45] Sozer E M, Šimá?ek P, Advani S G. Resin transfer molding (RTM) in polymer matrix composites[J]. Manufacturing Techniques for Polymer Matrix Composites (PMCs), 2012: 245.
[46] Qiu H B, Hu Q, Huang Z Y, et al. Discussion on RFI process of advanced composite material integral panel[J]. Equipment Manufacturing Technology, 2013(8): 49-51 (in Chinese). 邱航波, 胡清, 黄智勇, 等. 先进复合材料整体壁板RFI成型工艺探讨[J]. 装备制造技术, 2013(8): 49-51.
[47] Liu Q, Zhao L, Zhuo P, et al. Application of VARI technology in civil aircraft wing flap structure[J]. Aeronautical Manufacturing Technology, 2013(22): 80-83 (in Chinese). 刘强, 赵龙, 卓鹏, 等. VARI技术在民机襟翼结构上的应用研究[J]. 航空制造技术, 2013(22): 80-83.
[48] Ma J R, Huang F, Zhao L, et al. Analysis of the effect of control variables to the Z-Pin/RTM molding process[J]. Aeronautical Manufacturing Technology, 2014 (15): 118-121 (in Chinese). 马金瑞, 黄峰, 赵龙, 等. Z-Pin/RTM成型工艺影响因素分析及工艺研究[J]. 航空制造技术, 2014 (15): 118-121.
[49] Liang D, Jiang Y F, Xiong Z J, et al. Research and development of key manufacturing technology and restriction for resin composites[J]. Materials Review, 2011, 25(7): 5-8 (in Chinese). 梁栋, 蒋云峰, 熊志建, 等. 树脂基复合材料关键制造技术的研究进展与制约因素分析[J]. 材料导报, 2011, 25(7): 5-8.
[50] Yin X S, Du S Y. Development of rtmable polymer matrix composite materials and the related innovative technologies[C]//The 15th Composites Academic Conference Proceedings, 2008: 13-18 (in Chinese). 益小苏, 杜善义. 先进树脂转移模塑树脂基复合材料技术研究进展[C]//第十五届复合材料学术会议论文集, 2008: 13-18.
[51] Davies L W, Day R J, Bond D, et al. Effect of cure cycle heat transfer rates on the physical and mechanical properties of an epoxy matrix composite[J]. Composites Science and Technology, 2007, 67(9): 1892-1899.
[52] Qi J W, Li Y, Xiao J. Advanced pultrusion technology used on large aircraft composite structures[J]. Aeronautical Manufacturing Technology, 2013(15): 58-60 (in Chinese). 齐俊伟, 李勇, 肖军. 先进拉挤成形技术及其在大飞机复合材料结构中的应用[J]. 航空制造技术, 2013(15): 58-60.
[53] Fang Y W, Wang X F, Sun C, et al.The manufacture and application of composite wing spars[J]. Fiber Reinforced Plastics/Composites, 2014(2): 69-74 (in Chinese). 方宜武, 王显峰, 孙成, 等. 复合材料机翼翼梁的制造及应用概况[J]. 玻璃钢/复合材料, 2014(2): 69-74.
[54] Correia J R. Pultrusion of advanced fibre-reinforced polymer (FRP) composites[J]. Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications, 2013: 207.
[55] Yin X Y, Zhu B, Liu H Z, et al. Advance of the research in carbon fiber reinforced thermoplastic resin matrix composite[J]. Hi-Tech Fiber & Application, 2012, 36(6): 42-44 (in Chinese). 尹翔宇, 朱波, 刘洪正, 等. 碳纤维增强热塑性树脂基复合材料的研究现状[J]. 高科技纤维与应用, 2012, 36(6): 42-44.
[56] Song Q H, Wen L W, Yan B, et al.Automated tape laying technology of thermoplastic and resin-based composites[J]. Aeronautical Manufacturing Technology, 2013(15): 42-44 (in Chinese). 宋清华, 文立伟, 严飙, 等. 热塑性树脂基复合材料自动铺带技术[J]. 航空制造技术, 2013(15): 42-44.
[57] Wang X G, Yu Y, Li S M, et al. The research on fiber reinforced thermoplastic composite[J]. Fiber Composites, 2011(2): 44-47 (in Chinese). 王兴刚, 于洋, 李树茂, 等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011(2): 44-47.
[58] Novo P J, Nunes J P, Silva J F, et al. Production of thermoplastics matrix preimpregnated materials to manufacture composite pultruded profiles[J]. Ciência & Tecnologia dos Materiais, 2013, 25(2): 85-91.
[59] Hufenbach W, Kupfer R, Pohl M, et al.Manufacturing and analysis of loop connections for thermoplastic composites[J]. Procedia Materials Science, 2013, 2: 144-152.
[60] Uddin N, Abro A M, Purdue J D, et al. Thermoplastic composites for bridge structures[J]. Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, 2013: 317.
[61] Deng S, Djukic L, Paton R, et al. Thermoplastic-epoxy interactions and their potential applications in joining composite 8 structures-A review[J]. Composites Part A: Applied Science and Manufacturing, 2015, 68: 121-132.
[62] Yang L, Thomason J L. Development and application of micromechanical techniques for characterising interfacial shear strength in fibre-thermoplastic composites[J]. Polymer Testing, 2012, 31(7): 895-903.
[63] Xu R X, Zhang Q M, Yang J. Study on digitized modeling technology of composites component[J]. Aeronautical Manufacturing Technology, 2010(9): 17 (in Chinese). 徐荣欣, 张庆茂, 杨军. 复合材料构件数字化建模技术研究[J]. 航空制造技术, 2010(9): 17.
[64] Chen F, Wang J. Curing simulation of composites autoclave forming based on COMPRO mode[J]. Aerospace Materials & Technology, 2014, 44(1): 41-46 (in Chinese). 陈飞, 王健. 基于COMPRO模型的复合材料热压罐成型工艺仿真[J]. 宇航材料工艺, 2014, 44(1): 41-46.
[65] Zhu D L, Yi M B, Liao D M. Analysis on simulation to autoclave curing process of composites[J]. Aerospace Materials & Technology, 2014, 44(1): 53-56 (in Chinese). 朱大雷, 易茂斌, 廖敦明. 复合材料热压罐固化工艺仿真分析[J]. 宇航材料工艺, 2014, 44(1): 53-56.
[66] Yuan Z Y, Wang Y J, Zhang Y, et al. Multi coupled numeral simulation for curing process of composites with time-dependent properties of material[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 167-175 (in Chinese). 元振毅, 王永军, 张跃, 等. 基于材料性能时变特性的复合材料固化过程多场耦合数值模拟[J]. 复合材料学报, 2015, 32(1): 167-175.
[67] Li C L. Numerical simulation for autoclave curing design of composite materials[J]. Fiber Reinforced Plastics/Composites, 2014(11): 26-29 (in Chinese). 李彩林. 复合材料热压罐固化设计的数值模拟[J]. 玻璃钢/复合材料, 2014(11): 26-29.
[68] Bai G H, Yan D X, Zhang D M, et al. A study on the temperature filed distribute property of large frame type molds[J]. Acta Materiae Compositae Sinica, 2013, 30(Suppl): 169-174 (in Chinese). 白光辉, 晏冬秀, 张冬梅, 等. 大型复杂框架式模具温度场模拟[J]. 复合材料学报, 2013, 30(增刊): 169-174.
[69] Fu C Y, Li Y G, Li N Y, et al.Temperature uniformity optimizing method of the aircraft composite parts in autoclave processing[J]. Journal of Materials Science and Engineering, 2013, 31(2): 273-276 (in Chinese). 傅承阳, 李迎光, 李楠垭, 等. 飞机复合材料制件热压罐成型温度场均匀性优化方法[J]. 材料科学与工程学报, 2013, 31(2): 273-276.
[70] Wu J J, Guo J. Thermal-structure coupling deformation analysis of large composites forming mold[J]. Aeronautical Manufacturing Technology, 2012(23): 58-61 (in Chinese). 吴建军, 郭军. 大型复合材料成型工装热-结构耦合变形分析[J]. 航空制造技术, 2012(23): 58-61.
[71] Huang Q Z, Ren M F, Chen H R, et al. Simulation of temperature field for an advanced grid-stiffened composite structure in the co-curing process[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 141-147 (in Chinese). 黄其忠, 任明法, 陈浩然, 等. 复合材料先进网格结构共固化工艺的温度场模拟[J]. 复合材料学报, 2011, 28(3): 141-147.
[72] Zhang C, Liang X Z, Wang Y G, et al. Rules of impact of autoclave environment on frame mould temperature field of advanced composites[J]. Journal of Materials Science and Engineering, 2011, 29(4): 547-553 (in Chinese). 张铖, 梁宪珠, 王永贵, 等. 热压罐工艺环境对于先进复合材料框架式成型模具温度场的影响[J]. 材料科学与工程学报, 2011, 29(4): 547-553.
[73] Zhang C, Zhang B M, Wang Y G, et al.Refined simulation on curing temperature field of composite structure[J]. Development and Application of Materials, 2010, 25(3): 41-46 (in Chinese). 张铖, 张博明, 王永贵, 等. 复合材料结构固化温度场精化模拟[J]. 材料开发与应用, 2010, 25(3): 41-46.
[74] Wang Z Y, Chen G, Zheng Z C. Review on temperature field in curing process of fiber reinforced composites[J]. Engineering Plastics Application, 2010, 38(8): 85-88 (in Chinese). 王志远, 陈刚, 郑志才. 树脂基复合材料固化过程温度场研究进展[J]. 工程塑料应用, 2010, 38(8): 85-88.
[75] Hsiao S W, Kikuchi N. Numerical analysis and optimal design of composite thermoforming process[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 177(1): 1-34.
[76] Rabearison N, Jochum C, Grandidier J C. A FEM coupling model for properties prediction during the curing of an epoxy matrix[J]. Computational Materials Science, 2009, 45(3): 715-724.
[77] Antonucci V, Giordano M, Hsiao K T, et al. A methodology to reduce thermal gradients due to the exothermic reactions in composites processing[J]. International Journal of Heat and Mass Transfer, 2002, 45(8): 1675-1684.
[78] Guo Z S, Du S, Zhang B. Temperature field of thick thermoset composite laminates during cure process[J]. Composites Science and Technology, 2005, 65(3): 517-523.
[79] Liu X L, Crouch I G, Lam Y C. Simulation of heat transfer and cure in pultrusion with a general-purpose finite element package[J]. Composites Science and Technology, 2000, 60(6): 857-864.
[80] Hubert P, Poursartip A. A review of flow and compaction modelling relevant to thermoset matrix laminate processing[J]. Journal of Reinforced Plastics and Composites, 1998, 17(4): 286-318.
[81] Springer G S. Resin flow during the cure of fiber reinforced composites[J]. Journal of Composite Materials, 1982, 16(5): 400-410.
[82] Dave R, Kardos J L, Dudukovi? M P. A model for resin flow during composite processing: Part 1-General mathematical development[J]. Polymer Composites, 1987, 8(1): 29-38.
[83] Davé R. A unified approach to modeling resin flow during composite processing[J]. Journal of Composite Materials, 1990, 24(1): 22-41.
[84] Smith G D, Poursartip A. A comparison of two resin flow models for laminate processing[J]. Journal of Composite Materials, 1993, 27(17): 1695-1711.
[85] Li Y, Zhang Z, Li M, et al. Numerical simulation of flow and compaction during the cure of laminated composites[J]. Journal of Reinforced Plastics and Composites, 2007, 26(3): 251-268.
[86] Hubert P, Vaziri R, Poursartip A. A two-dimensional flow model for the process simulation of complex shape composite laminates[J]. International Journal for Numerical Methods in Engineering, 1999, 44(1): 1-26.
[87] Yang X N, Lu M K, Chen H R, et al. Research on the compensation of die's thermal expansion for composites material[J]. Fiber Composites, 2014, 31(2): 29-32 (in Chinese). 杨曦凝, 路明坤, 陈浩然, 等. 复合材料工装变形补偿方法研究[J]. 纤维复合材料, 2014, 31(2): 29-32.
[88] Yuan T J, Zhou L S, Ge Y H. Research on prediction and application of process-induced deformation of composite structures undergoing autoclave processing[J]. Manufacturing Technology & Machine Tool, 2011(7): 145-148 (in Chinese). 袁铁军, 周来水, 葛友华. 热压罐成型复合材料构件的变形预测与应用研究[J]. 制造技术与机床, 2011(7): 145-148.
[89] Ma Z Y, Zhang J K, Cheng X Q. Development of numerical simulation of the curing process of resin matrix composites[J]. Aeronautical Manufacturing Technology, 2013(15): 78-81 (in Chinese). 马志阳, 张纪奎, 程小全. 树脂基复合材料固化过程的数值模拟方法进展[J]. 航空制造技术, 2013(15): 78-81.
[90] Li J C, He K, Peng J, et al. Research development on the curing deformation of fiber reinforced thermosetting composite materials parts[J]. Fiber Composites, 2013, 30(1): 45-48 (in Chinese). 李建川, 何凯, 彭建, 等. 纤维增强热固性复合材料构件的固化变形研究进展[J]. 纤维复合材料, 2013, 30(1): 45-48.
[91] Yue G Q, Zhang J Z, Zhang B M. Influence of mold on cure-induced deformation of composites structure[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 206-210 (in Chinese). 岳广全, 张嘉振, 张博明. 模具对复合材料构件固化变形的影响分析[J]. 复合材料学报, 2013, 30(4): 206-210.
[92] Tang Z W, Zhang B M. Prediction of curing deformation in integrated design and manufacture of composites[J]. Aeronautical Manufacturing Technology, 2014(15): 32-37 (in Chinese). 唐占文, 张博明. 复合材料设计制造一体化中的固化变形预报技术[J]. 航空制造技术, 2014(15): 32-37.
[93] Pang J, Huang C Y. Study on control method of cure-induced deformation for integrated composite panel[J]. Computer Simulation, 2013, 30(3): 119-122 (in Chinese). 庞杰, 黄传勇. 复合材料整体壁板固化变形控制方法研究[J]. 计算机仿真, 2013, 30(3): 119-122.
[94] Jia L J, Ye J R, Liu W P. Role of structural factors in process cure-induced deformation of the complex composites[J]. Acta Materiae Compositae Sinica, 2013, 30(S1): 261-265 (in Chinese). 贾丽杰, 叶金蕊, 刘卫平, 等. 结构因素对复合材料典型结构件固化变形影响[J]. 复合材料学报, 2013, 30(S1): 261-265.
[95] Zhang J K, Ma Z Y, Li X M, et al. Numerical simulation of cure deformation of composite taper shell with thermal protection layer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(8): 1037-1041 (in Chinese). 张纪奎, 马志阳, 李学梅, 等. 带防热层复合材料锥壳热固化变形的数值模拟[J]. 北京航空航天大学学报, 2013, 39(8): 1037-1041.
[96] Jiang T, Xu J F, Liu W P, et al. Simulation and verification of cure-induced deformation by stages for integrated composite structure[J]. Acta Materiae Compositae Sinica, 2013, 30(5): 61-66 (in Chinese). 江天, 徐吉峰, 刘卫平, 等. 整体化复合材料结构分阶段固化变形预报方法及其实验验证[J]. 复合材料学报, 2013, 30(5): 61-66.
[97] Johnston A, Vaziri R, Poursartip A. A plane strain model for process-induced deformation of laminated composite structures[J]. Journal of Composite Materials, 2001, 35(16): 1435-1469.
[98] Sunderland P, Yu W, Månson J A. A thermoviscoelastic analysis of process-induced internal stresses in thermoplastic matrix composites[J]. Polymer Composites, 2001, 22(5): 579-592.
[99] Nelson R H, Cairns D S. Prediction of dimensional changes in composite laminates during cure[J]. Tomorrow's Materials: Today, 1989, 34: 2397-2410.
[100] McEntee S P, ÓBrádaigh C M. Large deformation finite element modelling of single-curvature composite sheet forming with tool contact[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(1): 207-213.
[101] Zeng X, Raghavan J. Role of tool-part interaction in process-induced warpage of autoclave-manufactured composite structures[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1174-1183.
[102] Yue G Q, Zhang B M, Dai F H. Interaction between mold and composite parts during curing process[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 167-171 (in Chinese). 岳广全, 张博明, 戴福洪, 等. 固化过程中模具与复合材料构件相互作用分析[J]. 复合材料学报, 2010, 27(6): 167-171.
[103] Yue G Q, Zhang B M, Du S Y, et, al. Influence of the mould on curing induced shape distortion for resin matrix thermosetting composites[J]. Fiber Reinforced Plastics/Composites, 2010(5): 62-65 (in Chinese). 岳广全, 张博明, 杜善义, 等. 模具对热固性树脂基复合材料固化变形的影响[J]. 玻璃钢/复合材料, 2010(5): 62-65.
[104] Zhang J, Liao W H, Li Y G. Finite element analysis of the mould influence on process-induced deformation of cylindrical composite part[J]. Acta Materiae Compositae Sinica, 2012, 29(5): 191-195 (in Chinese). 张吉, 廖文和, 李迎光. 模具对柱面复合材料构件固化变形影响的有限元分析[J]. 复合材料学报, 2012, 29(5): 191-195.
[105] Twigg G, Poursartip A, Fernlund G. An experimental method for quantifying tool-part shear interaction during composites processing[J]. Composites Science and Technology, 2003, 63(13): 1985-2002.
[106] Melo J D, Radford D W. Modeling manufacturing distortions in flat symmetric[C]//31st International Technical Conference Composite Laminates, 1999: 592-603.
[107] Twigg G, Poursatip A, Ferlund G. Tool-part interaction in composite processing Part I: Experimental investigation and analytical model[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 121-133
[108] Twigg G, Poursatip A, Ferlund G. Tool-part interaction in composite processing Part II: Numerical modeling[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 135-141
[109] Li H Y. Airworthiness issues of composite applied in civil aircraft[J]. Aeronautical Manufacturing Technology, 2009(16): 26-29 (in Chinese). 李宏运. 复合材料在民机应用中有关适航问题的探讨[J]. 航空制造技术, 2009(16): 26-29.
[110] Shen Z, Shi Y H, Li G M. Composite shared database[J]. Advanced Materials Industry, 2012(2): 11-14 (in Chinese). 沈真, 史有好, 李国明. 复合材料共享数据库[J]. 新材料产业, 2012(2): 11-14.
[111] Gao H, Sun C L, Du B R, et al. Construction of process database for typical composite component[J]. Aeronautical Manufacturing Technology, 2011(21): 87-91 (in Chinese). 高航, 孙长乐, 杜宝瑞, 等. 复合材料典型构件加工工艺数据库的构建[J]. 航空制造技术, 2011(21): 87-91.
[112] Wang X, Xie F, Li M, et al. Correlated rules between complex structure of composite components and manufacturing defects in autoclave molding technology[J]. Journal of Reinforced Plastics and Composites, 2009, 28(22): 2791-2803.
[113] Wang X M, Xie F Y, Li M, et al. Effect rules of complex structure on manufacturing defects for composites in autoclave molding[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 757-762 (in Chinese). 王雪明, 谢富原, 李敏, 等. 热压罐成型复合材料复杂结构对制造缺陷的影响规律[J]. 航空学报, 2009, 30(4): 757-762.
[114] Xie F Y, Wang X M, Li M, et al. Correlation between geometric factors of composite components and manufacturing defects[J]. Journal of Materials Engineering, 2009(Suppl): 84-88 (in Chinese). 谢富原, 王雪明, 李敏, 等. 复合材料结构几何要素与制造缺陷的关联分析[J]. 材料工程, 2009(增刊): 84-88.
[115] Xie F Y, Wang X M, Li M, et al. Statistical study of delamination area distribution in composite components fabricated by autoclave process[J]. Applied Composite Materials, 2009, 16(5): 285-295.
[116] Wang X M, Xie F Y, Li M, et al. Factor analysis of delamination in composite components produced by autoclave process[C]//The 15th National Conference on Composite Materials, 2008: 526-530 (in Chinese). 王雪明, 谢富原, 李敏, 等. 热压罐成型复合材料构件分层缺陷影响因素分析[C]//第十五届全国复合材料学术会议, 2008: 526-530.
[117] Wang X M, Xie F Y, Li M, et al. Sub-cluster theory analysis of process quality for composite components by autoclave process[J]. Acta Materiae Compositae Sinica, 2010, 27(4): 70-74 (in Chinese). 王雪明, 谢富原, 李敏, 等. 热压罐成型复合材料构件工艺质量的群子理论分析[J]. 复合材料学报, 2010, 27(4): 70-74.
[118] Xin C, Gu Y,Li M, et al. Experimental and numerical study on the effect of rubber mold configuration on the compaction of composite angle laminates during autoclave processing[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(10): 1353-1360.
[119] Fernlund G, Courdji R, Poursartip A, et al. Process induced deformations of the Boeing 777 aft strut trailing edge fairing[C]//33 rd International SAMPE Technical Conference, 2001: 347-355.
[120] Li M, Gu Y Z, Li Y, et al. Numerical simulation based process window for consolidation of thermoset composite laminates[J].Polymers & Polymer Composites, 2009, 17(2): 73-82.
[121] Gu Y Z, Li M, Zhang Z G, et al. Effects of resin storage aging on rheological property and consolidation of composite laminates[J]. Polymer Composites, 2009, 30(8): 1081-1090.
[122] Pu Y W. Thoughts on the manufacturing system of advanced composites[J]. Aeronautical Manufacturing Technology, 2014(15): 26-29 (in Chinese). 蒲永伟. 关于先进复合材料制造体系的几点思考[J]. 航空制造技术, 2014(15): 26-29.
[123] Xin C, Gu Y, Li M, et al. Online monitoring and analysis of resin pressure inside composite laminate during zero-bleeding autoclave process[J]. Polymer Composites, 2011, 32(2): 314-323.
[124] Zhou Z, Li M, Gu Y Z, et al. Resin flow monitoring inside composite laminate during resin film infusion process[J]. Polymer Composites, 2014, 35(4): 681-690.
[125] Zheng Y Z, Gu Y Z, Sun Z J, et al. Core crush of Nomex honeycomb sandwich structure during co-curing process with vacuum bag[J]. Acta Materiae Compositae Sinica, 2009, 26(4): 29-35 (in Chinese). 郑义珠, 顾轶卓, 孙志杰, 等. Nomex蜂窝夹层结构真空袋共固化过程蜂窝变形[J]. 复合材料学报, 2009, 26(4): 29-35.
[126] Gu Y Z, Li M, Li Y, et al. Pressure transfer behavior of rubber mold and the effects on consolidation of L-shape composite laminates[J]. Polymer & Polymer Composites, 2010, 18(3): 167-174.
[127] Wang X, Xie F Y, Li M, et al.Influence of core fillers on resin flow and fiber compaction of co-cured skin-to-stiffener structures[J]. Polymer Composites, 2010, 31(8): 1360-1368.
[128] Liu X L, Gu Y Z, Li M, et al.Compacting pressure measuring method in autoclave processing of polymer composites using film sensor[J]. Acta Materiae Compositae Sinica, 2013, 30(5): 67-73 (in Chinese). 刘小龙, 顾轶卓, 李敏, 等. 采用薄膜传感器的树脂基复合材料热压罐工艺密实压力测试方法[J]. 复合材料学报, 2013, 30(5): 67-73.
/
〈 | 〉 |