固体力学与飞行器总体设计

部件级多组件结构系统的整体式拓扑布局优化

  • 张卫红 ,
  • 郭文杰 ,
  • 朱继宏
展开
  • 西北工业大学 工程仿真与宇航计算技术实验室, 西安 710072
郭文杰 男, 硕士研究生。主要研究方向: 结构拓扑优化设计。Tel: 029-88493914-1222 E-mail: wjguo@mail.nwpu.edu.cn;朱继宏 男, 教授, 博士生导师。主要研究方向: 结构优化设计。Tel: 029-88493914-1222 E-mail: jh.zhu@nwpu.edu.cn

收稿日期: 2015-04-27

  修回日期: 2015-05-17

  网络出版日期: 2015-06-01

基金资助

国家自然科学基金(11432011, 11172236); 高等学校创新引智计划(B07050); 陕西省科学技术研究发展计划项目(2014KJXX-37); 中央高校基本科研业务费专项资金(3102014JC02020505)

Integrated layout and topology optimization design of multi-component systems with assembly units

  • ZHANG Weihong ,
  • GUO Wenjie ,
  • ZHU Jihong
Expand
  • Laboratory of Engineering Simulation & Aerospace Computing(ESAC), Northwestern Polytechnical University, Xi'an 710072

Received date: 2015-04-27

  Revised date: 2015-05-17

  Online published: 2015-06-01

Supported by

National Natural Science Foundation of China (11432011, 11172236); the "111" Project (B07050); Science and Technology Research and Development Projects in Shaanxi Province (2014KJXX-37); the Fundamental Research Funds for the Central Universities (3102014JC02020505)

摘要

基于多组件结构系统整体式拓扑布局优化设计方法,研究了同时含有部件布局、组件布局、主结构框架构型和部件结构构型4类设计变量的复杂系统协同优化设计问题,是整体式拓扑布局优化设计面向复杂飞行器结构系统设计的拓展。采用多点约束(MPC)模拟组件、部件及支撑结构之间的刚性连接,采用有限包络圆方法(FCM)解决组件之间、组件与设计域边界之间的几何干涉问题。通过整体式拓扑布局的刚度优化设计,部件和组件均可以获得优化的布局位置,同时主结构框架构型和部件结构构型获得优化的结构样式,充分体现了整体式拓扑布局优化设计方法应用于复杂结构系统设计的能力。

本文引用格式

张卫红 , 郭文杰 , 朱继宏 . 部件级多组件结构系统的整体式拓扑布局优化[J]. 航空学报, 2015 , 36(8) : 2662 -2669 . DOI: 10.7527/S1000-6893.2015.0141

Abstract

The purpose of this paper is to introduce assembly units into the existing integrated layout and topology optimization design of multi-component systems. Considering a complex system in which several components and assembly units are placed in a specified design domain, the aim of the design is to find the optimal position and orientation of each component and those of the assembly units, as well as the configuration of the structure that supports and interconnects the components and assembly units, which significantly extends the integrated layout and topology optimization design facing complicated aircraft and aerospace structure systems. The multi-point constraints (MPC) is used to simulate the rivets or bolts connections among the components, assembly units and the supporting structures. The finite-circle method (FCM) is applied to avoiding the overlaps among the components and those between components and boundaries of the design domain. The positions and orientations of the components and the assembly units are optimized together with the configuration of the supporting structures simultaneously through the proposed method. The optimized designs have shown the ability of integrated layout and topology optimization method in designing complicated aircraft and aerospace structure systems.

参考文献

[1] Sigmund O, Maute K. Topology optimization approaches[J]. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055.
[2] Deaton J D, Grandhi R V. A survey of structural and multidisciplinary continuum topology optimization: Post 2000[J]. Structural and Multidisciplinary Optimization, 2014, 49(1): 1-38.
[3] Guo X, Cheng G D. Recent development in structural design and optimization[J]. Acta Mechanica Sinica, 2010, 26(6): 807-823.
[4] Zhu J H, Zhang W H, Xia L. Topology optimization in aircraft and aerospace structures design[J]. Archives of Computational Methods in Engineering, 2015. DOI: 10.1007/s11831-015-9151-2.
[5] Feng E, Wang X, Wang X, et al. An algorithm of global optimization for solving layout problems[J]. European Journal of Operational Research, 1999, 114(2): 430-436.
[6] Zhang B, Teng H F, Shi Y J. Layout optimization of satellite module using soft computing techniques[J]. Applied Soft Computing, 2008, 8(1): 507-521.
[7] Qian Z, Ananthasuresh G K. Optimal embedding of rigid objects in the topology design of structures[J]. Mechanics Based Design of Structures and Machines, 2004, 32(2): 165-193.
[8] Zhu J H, Zhang W H, Beckers P. Integrated layout design of multi-component system[J]. International Journal for Numerical Methods in Engineering, 2009, 78(6): 631-651.
[9] Zhu J H, Zhang W H, Beckers P, et al. Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique[J]. Structural and Multidisciplinary Optimization, 2008, 36(1): 29-41.
[10] Gao H H, Zhu J H, Zhang W H, et al. An improved adaptive constraint aggregation for integrated layout and topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 387-408.
[11] Xia L, Zhu J H, Zhang W H, et al. An implicit model for the integrated optimization of component layout and structure topology[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 257(16): 87-102.
[12] Zhang J, Zhang W H, Zhu J H, et al. Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 245(4): 75-89.
[13] Zhang W S, Sun G, Guo X, et al. A level set-based approach for simultaneous optimization of the structural topology and the layout of embedding structural components[J]. Engineering Mechanics, 2013, 30(7): 22-27 (in Chinese). 张维声, 孙国, 郭旭, 等. 基于水平集描述的结构拓扑与构件布局联合优化新方法[J]. 工程力学, 2013, 30(7): 22-27.
[14] Zhang W S, Zhang W L, Guo X. Explicit layout control in optimal design of structural systems with multiple embedding components[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 290: 290-313.
[15] Kang Z, Wang Y. Integrated topology optimization with embedded movable holes based on combined description by material density and level sets[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 255(1): 1-13.
[16] Zhu J H, Gao H H, Zhang W H, et al. A multi-point constraints based integrated layout and topology optimization design of multi-component systems[J]. Structural and Multidisciplinary Optimization 2015, 51(5): 397-407.

文章导航

/