TC4钛合金薄壁带筋锥形环辗轧充填规律
收稿日期: 2015-04-10
修回日期: 2015-05-14
网络出版日期: 2015-05-28
基金资助
国家自然科学基金(51175427, 51135007); 金属挤压与锻造装备技术国家重点实验室(中国重型机械研究院有限公司)开放基金(2011MEFETKF_03); 材料成形与模具技术国家重点实验室开放基金(P2014-05); 高等学校学科创新引智计划(B08040)
Filling rules in thin-walled and ribbed conical ring rolling for TC4 titanium alloy
Received date: 2015-04-10
Revised date: 2015-05-14
Online published: 2015-05-28
Supported by
National Natural Science Foundation of China (51175427, 51135007); Fund of the State Key Laboratory of Metal Extrusion and Forging Equipment Technology (China National Heavy Machinery Research Institute Co.,Ltd.) (2011MEFETKF_03); Open Fund of the State Key Laboratory of Materials Processing and Die & Mould Technology (P2014-05); "111" Project (B08040).
钛合金薄壁带筋锥形环件是航空航天关键基础构件,型槽充填不满、截面轮廓难以精确成形,是该复杂异形环件精密辗轧成形面临的瓶颈问题。本文分析了影响型槽充填行为的关键影响因素,即决定塑性变形行为的每转进给量、以及决定每转进给量在环件内外表面分配比例的驱动辊半径和芯辊半径;以某TC4钛合金薄壁带外筋锥形环辗轧为研究对象,通过ABAQUS的VUAMP子程序开发,建立了实现以常每转进给量进给的芯辊运动闭环控制有限元仿真模型;进而模拟揭示了每转进给量、驱动辊半径和芯辊半径对型槽充填质量(充填率、型槽入口变形及其均匀性)的影响规律。结果表明:随着每转进给量增大,充填率先增大后减小,表明存在一个最佳的每转进给量最利于充填;随着每转进给量增大,型槽入口区域变形越小且分布越均匀,可有效抑制该区域产生裂纹缺陷;随着驱动辊半径增大,充填率逐渐减小,不利于型槽充填;随着芯辊半径增大,充填率逐渐增大,有利于型槽充填。
郭良刚 , 杨合 , 邸伟佳 , 陈福龙 , 朱帅 . TC4钛合金薄壁带筋锥形环辗轧充填规律[J]. 航空学报, 2015 , 36(8) : 2798 -2806 . DOI: 10.7527/S1000-6893.2015.0150
The thin-walled and ribbed conical ring is one of the key underlying components widely used in aerospace industry. Being difficult to precision forming of cross-section of ring due to lack filling of groove profile is the bottleneck problem for this complex profiled ring rolling process. In this work, the key factors influencing the filling behavior, namely the feed amount per revolution, the radii of the main roll and idle roll are discussed. And taking a thin-walled and ribbed conical ring rolling process for TC4 titanium alloy as object, An FE model achieving close-loop control of idle roll with constant feed amount per revolution is established using VUAMP subroutine under ABAQUS environment. Then the influence rules of the feed amount per revolution and the radii of the main roll and idle roll on the filling quality, described by filling ratio and deformation and its uniformity at entrance of the groove profile, are disclosed by comprehensive simulations. The results show that: the filling ratio first increases and then decreases with the increase of feed amount per revolution, indicating that there is an optimum feed amount per revolution best beneficial to filling the groove profile; the deformation at the entrance of the groove profile is small and its distribution is uniform thus beneficial to avoiding the crack defect of that region with increasing feed amount per revolution; it is beneficial to filling the groove profile when decreasing the main roll's radius or increasing the idle roll's radius.
[1] Allwood J M, Tekkaya A E, Stanistreet T F. The development of ring rolling technology[J]. Steel Research International, 2005, 76(2-3): 111-120.
[2] Allwood J M, Tekkaya A E, Stanistreet T F. The development of ring rolling technology-Part 2: Investigation of process behaviour and production equipment[J]. Steel Research International, 2005, 76(7): 491-507.
[3] He S L, Ma B J, Ding S Q, et al. The rolling technology of titanium and its alloy ring[J]. Titanium Industry Progress, 2006, 23(4): 27-30 (in Chinese). 何书林, 马宝军, 丁珊奇, 等. 钛及钛合金环材轧制技术[J]. 钛工业进展, 2006, 23(4): 27-30.
[4] Zhang D Z, Zhu F, Yang Z, et al. Manufacturing process of large-scale rings made of titanium alloy Ti-4Al-0.005B[J]. Titanium Industry Progress, 2003, 20(6): 26-27 (in Chinese). 张德昭, 朱峰, 杨昭, 等. Ti-4Al-0.005B钛合金大型环件的研制[J]. 钛工业进展, 2003, 20(6): 26-27.
[5] Yeom J T, Kim J H, Park N K, et al. Ring-rolling design for a large-scale ring product of Ti-6Al-4V alloy[J]. Journal of Materials Processing Technology, 2007, 187-188: 747-751.
[6] Neminathan P V, Velpari M S, Rao S R A, et al. Development of ring forgings in Ti-6Al-4V alloy for aero-engine applications[J]. Transactions of Indian Institute of Metals, 2008, 61(5): 355-361.
[7] Giorleo L, Ceretti E, Giardini C. Energy consumption reduction in ring rolling processes: A FEM analysis[J]. International Journal of Mechanical Sciences, 2013, 74: 55-64.
[8] Zhou G, Hua L, Qian D S. 3D coupled thermo-mechanical FE analysis of roll size effects on the radial-axial ring rolling process[J]. Computational Materials Science, 2011, 50: 911-924.
[9] Mamalis A G, Hawkyard J B, Johnson W. Spread and flow patterns in ring rolling[J]. International Journal of Mechanical Sciences, 1976, 18(1): 11-16.
[10] Lee K H, Ko D C, Kim D H, et al. Design method for intermediate roll in multi-stage profile ring rolling process: The case for excavator idler rim[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(3): 503-512.
[11] Guo L G, Chen J H, Yang H, et al. Response rules of strain and temperature fields to roll sizes during hot rolling process of TC4 titanium alloy conical ring[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1463-1473 (in Chinese). 郭良刚, 陈建华, 杨合, 等. TC4钛合金锥形环热辗轧应变及温度场对轧辊尺寸的响应规律[J]. 航空学报, 2013, 34(6): 1463-1473.
[12] Ma Y W, Wang Z H, Liu D, et al. Optimization of rotational speed of main roll in profiled ring rolling of GH4169 alloy[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1555-1562 (in Chinese). 马义伟, 王志宏, 刘东, 等. GH4169合金异形环件轧制过程的最优主辊转速[J]. 航空学报, 2011, 32(8): 1555-1562.
[13] Hua L, Qian D S, Pan L B. Deformation behaviors and conditions in L-section profile cold ring rolling[J]. Journal of Materials Processing Technology, 2009, 209(11): 5087-5096.
[14] Kim K H, Suk H G, Huh M Y. Development of the profile ring rolling process for large slewing rings of alloy steels[J]. Journal of Materials Processing Technology, 2007, 187-188: 730-733.
[15] Tiedemann I, Hirt G, Kopp R, et al. Material flow determination for radial flexible profile ring rolling[J]. Production Engineering, 2007, 1(3): 227-232.
[16] Li L Y, Yang H, Guo L G, et al. Research on interactive influences of parameters on T-shaped cold ring rolling by 3D-FE numerical simulation[J]. Journal of Mechanical Science and Technology, 2007, 21(10): 1541-1547.
[17] Guo L G, Yang H, Zhan M. Research on plastic deformation behaviour in cold ring rolling by FEM numerical simulation[J]. Modelling and Simulation in Material Science and Engineering, 2005, 13(7): 1029-1046.
[18] Li L Y. Study on the key problems in profiled cold ring rolling process[D]. Xi'an: Northwestern Polytechnical University, 2009 (in Chinese). 李兰云. 异形环件冷辗扩成形过程中的关键问题研究[D]. 西安: 西北工业大学, 2009.
[19] Hua L, Zuo Z J, Lan J, et al. Control method design for feed rate of idle roller in cold ring rolling[J]. China Mechanical Engineering, 2006, 17(9): 953-957 (in Chinese). 华林, 左治江, 兰箭, 等. 环件冷辗扩芯辊进给速度规范设计[J]. 中国机械工程, 2006, 17(9): 953-957.
[20] Hua L, Huang X G, Zhu C D. Theory and technology of ring rolling[M]. Beijing: Mechanical Industry Press, 2001: 7-9 (in Chinese). 华林, 黄兴高, 朱春东. 环件轧制理论和技术[M]. 北京: 机械工业出版社, 2001: 7-9.
[21] Wang M, Yang H, Sun Z C, et al. Analysis of mechanical and thermal behaviors in hot rolling of large rings of titanium alloy using 3D dynamic explicit FEM[J]. Journal of Materials Processing Technology, 2009, 209(7): 3384-3395.
[22] Zhu S, Yang H, Guo L G, et al. Research on the effects of coordinate deformation on radial-axial ring rolling process by FE simulation based on in-process control[J]. International Journal of Advanced Manufacturing Technology, 2014, 72(1-4): 57-68.
/
〈 |
|
〉 |