基于ELM的飞机数字化装配定位运动模型
收稿日期: 2015-03-23
修回日期: 2015-05-26
网络出版日期: 2015-05-28
基金资助
国家科技支撑计划(2011BAF13B07)
Kinematic model of digital assembly location for airplane based on ELM
Received date: 2015-03-23
Revised date: 2015-05-26
Online published: 2015-05-28
Supported by
National Key Technology Research and Development Program of China (2011BAF13B07)
针对飞机装配中开敞性较差环境下的串联装配机构半闭环定位运动控制问题进行研究,提出了基于极限学习机(EML)算法的飞机数字化装配定位运动模型。通过分析飞机数字化装配串联定位机构的运动学模型特点及性能要求,提出了飞机数字化装配定位运动的单隐含层前馈神经网络模型,并基于极限学习机提出了装配定位运动的数据辨识模型,且最后给出了基于极限学习机算法的定位运动离线辨识方法。通过将某大型飞机机身壁板柔性预定位工装作为试验平台进行验证,结果表明,获得的定位运动模型使直接装配定位精度达到±0.25 mm,满足某大型飞机机身壁板长桁的装配定位精度要求±0.50 mm。试验系统涉及的若干关键技术已应用于某大型飞机的壁板组件装配预定位柔性工装系统。
胡玉龙 , 王仲奇 , 李西宁 , 康永刚 . 基于ELM的飞机数字化装配定位运动模型[J]. 航空学报, 2016 , 37(4) : 1374 -1383 . DOI: 10.7527/S1000-6893.2015.0152
The research of semi-closed loop positioning for the tandem assembly mechanism in open poor aircraft assembly environment is conducted and the kinematic model of aircraft digital assembly location is studied based on extreme learning machine (ELM) for the positioning movement in assembly process. By analyzing the kinematic characteristics and performance requirements of the aircraft digital assembly location, the single-hidden layer feedforward neural-network model of assembly positioning movement is proposed, the data identification model of positioning movement is presented based on ELM, and finally the offline positioning movement identification method based on ELM is proposed. Achieving testing a certain type of aircraft fuselage panels' flexible pre-positioning tooling, the results show that the obtained positioning motion model meets the directly assembly positioning accuracy by ±0.25 mm and reaches the requirements ±0.50 mm about aircraft stringer assembly location accuracy. Several key technologies involved in the test system have been successfully applied to a large aircraft assembly system.
[1] 邹方, 薛汉杰, 周万勇, 等. 飞机数字化柔性装配关键技术及其发展[J]. 航空制造技术, 2006(9):30-35. ZOU F, XUE H J, ZHOU W Y, et al. Technologies and development of aircraft digital flexible assembly[J]. Aer-onautical Manufacturing Technology, 2006(9):30-35(in Chinese).
[2] 王巍, 贺平, 万良辉. 飞机柔性装配技术研究[J]. 机械设计与制造, 2006(11):88-90. WANG W, HE P, WAN L H. Study of technology on aeroplane flexible assembly[J]. Machinery Design & Manufacture, 2006(11):88-90(in Chinese).
[3] 许国康. 大型飞机自动化装配技术[J]. 航空学报, 2008, 29(3):734-740. XU G K. Automatic assembly technology for large air-craft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):734-740(in Chinese).
[4] 黄鹏, 王青, 李江雄, 等. 基于动力学模型的飞机大部件调姿轨迹规划[J]. 航空学报, 2014, 35(9):2672-2682. HUANG P, WANG Q, LI J X, et al. Adjustment optimal trajectory planning of aircraft component based on dynamics model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2672-2682(in Chinese).
[5] 王少锋, 张进华, 刘志刚, 等. 大型飞机机身壁板装配位姿调整系统的运动规划[J]. 西安交通大学学报, 2011, 45(3):102-106. WANG S F, ZHANG J H, LIU Z G, et al. Motion planning for posture alignment machine tool oriented fuselage panel[J]. Journal of Xi'an Jiao Tong University, 2011, 45(3):102-106(in Chinese).
[6] 邱宝贵, 蒋君侠, 毕运波, 等. 大型飞机机身调姿与对接试验系统[J]. 航空学报, 2011, 32(5):908-919. QIU B G, JIANG J X, BI Y B, et al. Posture alignment and joinling test system for large aircraft fuselages[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):908-919(in Chinese).
[7] 朱绪胜, 郑联语. 基于关键装配特性的大型零部件最佳装配位姿多目标优化算法[J]. 航空学报, 2012, 33(9):1726-1736. ZHU X S, ZHENG L Y. Multiple-objective optimization algorithm based on key assembly characteristics to posture best fit for large component assembly[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1726-1736(in Chinese).
[8] HUAN J, JIN Y, XIAO W L. CNC system of flexible fix-ture in aircraft component manufacturing and assembly[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(1):54-61.
[9] 韩飞飞, 赵继, 张雷, 等. 数控机床几何精度综合解析与试验研究[J]. 机械工程学报, 2012, 48(21):141-148. HAN F F, ZHAO J, ZHANG L, et al. Synthetical analysis and experimental study of the geometric accuracy of CNC machine tools[J]. Journal of Mechanical Engineering, 2012, 48(21):141-148(in Chinese).
[10] 王维, 杨建国, 姚晓栋, 等. 数控机床几何误差与热误差综合建模及其实时补偿[J]. 机械工程学报, 2012, 48(7):165-170. WANG W, YANG J G, YAO X D, et al. Synthesis modeling and real-time compensation of geometric error and thermal error for CNC machine tools[J]. Journal of Mechanical Engineering, 2012, 48(7):165-170(in Chinese).
[11] 王金栋, 郭俊杰, 费致根, 等. 基于激光跟踪仪的数控机床几何误差辨识方法[J]. 机械工程学报, 2011, 47(14):13-19. WANG J D, GUO J J, FEI Z G, et al. Method of geometric error identification for numerical control machine tool based on laser tracker[J]. Journal of Mechanical Engineering, 2011, 47(14):13-19(in Chinese).
[12] 姜万生, 黎永前, 乐清洪. 精密机床几何误差补偿技术及应用[J]. 制造业自动化, 2002, 24(12):47-50. JIANG W S, LI Y Q, LE Q H. Geometrical error compensation technologies in precision machine tool[J]. Manufacturing Automation, 2002, 24(12):47-50(in Chinese).
[13] 王福吉, 贾振元, 阳江源, 等. 基于动态模糊神经网络的机床时变定位误差补偿[J]. 机械工程学报, 2011, 47(13):175-179. WANG F J, JIA Z Y, YANG J Y, et al. Time-varying position error compensation of machine tools based on dynamic fuzzy neural networks[J]. Journal of Mechanical Engineering, 2011, 47(13):175-179(in Chinese).
[14] 王建平, 戴一帆, 洪晓丽. 精密机床神经网络法精度建模[J]. 国防科技大学学报, 2002, 24(1):89-93. WANG J P, DAI Y F, HONG X L. Neural network method of accuracy model building for precision ma-chine Tools[J]. Journal of National University of Defense Technology, 2002, 24(1):89-93(in Chinese).
[15] 邓万宇, 郑庆华, 陈琳, 等. 神经网络极速学习方法研究[J]. 计算机学报, 2010, 33(2):279-287. DENG W Y, ZHENG Q H, CHEN L, et al. Research on extreme learning of neural networks[J]. Chinese Journal of Computers, 2010, 33(2):279-287(in Chinese).
[16] 姜春福, 余跃庆, 刘迎春. 基于神经网络的机器人运动模型辨识及其实验研究[J]. 控制与决策, 2003, 18(5):550-554. JIANG C F, YU Y Q, LIU Y C. Theoretical and experimental study on kinematic model identification of robots based on neural networks[J]. Control and Decision, 2003, 18(5):550-554(in Chinese).
[17] 姜春福, 余跃庆. 基于神经网络的空间7R冗余机器人的运动模型辨识[J]. 应用基础与工程科学学报, 2002, 10(4):418-428. JIANG C F, YU Y Q. Kinematic model identification of spatial 7R redundant robot based on neural network[J]. Journal of Basic Science and Engineering, 2002, 10(4):418-428(in Chinese).
[18] 史峰, 王辉. MATLAB智能算法30个案例分析[M]. 北京:北京航空航天大学出版社, 2011:290-302. SHI F, WANG H. MATLAB intelligent algorithm 30 case studies[M]. Beijing:Beihang University Press, 2011:290-302(in Chinese).
[19] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:Theory and applications[J]. Neurocomputing, 2006, 70(1-3):489-501.
[20] HUANG G B, CHEN L, SIEW C K. Universal approximation using incremental constructive feedforward net-works with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4):879-892.
[21] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:A new learning scheme of feedforward neural networks[C]//2004 IEEE International Joint Conference on Neural Networks. Piscataway, NJ:IEEE Press, 2004, 2:985-990.
[22] HUANG G B, SIEW C K. Extreme learning machine with randomly assigned RBF kernels[J]. International Journal of Information Technology, 2005, 11(1):16-24.
[23] HUANG G B, LIANG N Y, RONG H J, et al. On-line sequential extreme learning machine[M]. Calgary:ACTA Press, 2005:232-237.
/
〈 | 〉 |