材料工程与机械制造

基于对称加载的均匀干涉配合铆接方法

  • 左杨杰 ,
  • 曹增强 ,
  • 杨柳 ,
  • 臧传奇
展开
  • 西北工业大学 机电学院, 西安 710072
左杨杰,男,博士研究生。主要研究方向:电磁铆接与飞机装配工艺。E-mail:zuoyangjie@mail.nwpu.edu.cn;曹增强,男,博士,教授,博士生导师。主要研究方向:飞机装配与先进连接技术,复合材料结构制造,金属塑性成形,电磁铆接技术研究及设备研制。Tel:029-88494454,E-mail:czq66326@nwpu.edu.cn

收稿日期: 2015-01-30

  修回日期: 2015-04-27

  网络出版日期: 2015-05-25

基金资助

陕西省科技统筹创新工程计划项目(2015KTCQ01-83);航空科学基金(2015ZE53065)

Interference-fit evenness riveting method based on symmetrical loading

  • ZUO Yangjie ,
  • CAO Zengqiang ,
  • YANG Liu ,
  • ZANG Chuanqi
Expand
  • School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-01-30

  Revised date: 2015-04-27

  Online published: 2015-05-25

Supported by

Shaanxi Science & Technology Co-ordination & Innovation Project(2015KTCQ01-83);Aeronauical Science Foundation of China(2015ZE53065)

摘要

铆接干涉量均匀度是影响飞行器装配接头疲劳寿命、结构铆接变形的重要因素之一。为了提高铆接干涉量均匀度,采用基于应力波加载的电磁铆接双面铆接方法,对对称加载的铆接工艺方法进行了研究。利用应力波传播和叠加原理对对称加载的钉杆应力水平进行理论分析,试验测量了电磁力应力波及其叠加效应。通过工艺试验和微观分析,研究了对称加载方法对铆接质量的影响。研究结果表明:对称加载方法下,双向应力波同步触发,脉冲宽度相等,钉杆理论应力水平高于单面加载;在对称应力波作用下,整体钉杆干涉量均匀,并形成有效干涉,钉头与夹层贴合紧密;对称加载钉孔绝对干涉量更大,平均干涉量大于单面加载14%,干涉量均匀度高出单面加载37.5%,有利于实现连接结构的疲劳寿命增益;对称加载方法引起的结构件铆接变形量小于单面加载,更容易保证装配件外形准确度。

本文引用格式

左杨杰 , 曹增强 , 杨柳 , 臧传奇 . 基于对称加载的均匀干涉配合铆接方法[J]. 航空学报, 2016 , 37(3) : 1049 -1059 . DOI: 10.7527/S1000-6893.2015.0113

Abstract

Evenness of riveting interference plays an important role in fatigue life of aircraft assembly joints, which is also one of the main reasons causing riveting structure deformation. With the purpose of improving the evenness of riveting interference, a research on symmetrical loading riveting process method is carried out, based on the symmetrical electromagnetic riveting with stress wave loading. In this paper, the rivet theoretical stress level under symmetrical loading is derived through propagation and superposition principle of stress wave, and electromagnetic guns' stress wave and superposition principle of stress wave are recorded through the experiment. With the riveting experiments and micro-analysis of riveting structure, the riveting quality is also studied under symmetrical loading. The results show that under symmetrical loading, the stress waves of two riveting guns simultaneously trigger with the same pulse length, and the rivet theoretical stress level is higher than that under uniaxial loading. Under the symmetrical stress wave loading, the overall deformation of rivet is uniform, forming an effective interference through the whole rivet, and rivet head and interlayer joint closely. The average level of interference is larger than the interference under uniaxial loading by 14%. Moreover, the average interference evenness increases by 37.5% under symmetrical loading which makes for achieving high fatigue life of aircraft assembly joints. The riveting structure deformation is smaller under symmetrical loading, doing good to ensure assembly accuracy.

参考文献

[1] CHAKHERLOU T N, ABAZADEH B. Experimental and numerical investigations about the combined effect of interference fit and bolt clamping on the fatigue behavior of Al 2024-T3 double shear lap joints[J]. Materials & Design, 2012, 33(1):425-435.
[2] 张岐良, 曹增强, 甘学东, 等. 拉伸板中心孔干涉配合对载荷幅值的影响[J]. 航空学报, 2014, 35(6):1643-1650. ZHANG Q L, CAO Z Q, GAN X D, et al. Effect of interference-fit on load amplitude of a single central holed tensile plate[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1643-1650(in Chinese).
[3] 曹增强. 电磁铆接技术在大飞机制造中的应用初探[J]. 航空学报, 2008, 29(3):716-720. CAO Z Q. Exploration of electromagnetic riveting application in large aircraft manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):716-720(in Chinese).
[4] SAASAT M, CRETIN L, SIM R, et al. Deformation analysis of large aerospace components during assembly[J]. International Journal of Advanced Manufacturing Technology, 2009, 41(1-2):145-155.
[5] WANG H. Riveting sequence study of horizontal stabilizer assembly using finite element analysis and riveting equivalent unit[J]. Journal of Aerospace Engineering, 2014, 27(6):04014040.
[6] CAO Z Q, CARDEW-HALL M. Interference-fit riveting technique in fiber composite laminates[J]. Aerospace Science and Technology, 2006, 10(4):327-330.
[7] 于海平, 李春峰. 大直径高强度铆钉电磁铆接技术[C]//第十一届全国塑性工程学术年会论文集. 北京:中国机械工程学会塑性工程分会, 2009:481-484. YU H P, LI C F. Electromagnetic riveting technology of large diameter rivet with high strength[C]//The 11th National Plastic Engineering Academic Annual Meeting. Beijing:Chinese Institute of Mechanical Engineering Plastic Engineering Branch, 2009:481-484(in Chinese).
[8] WEBB P, EASTWOOD S, CHITIU A, et al. Flexible automated riveting and assembly of fuselage skin panels:SAE-2003-2954[R]. Los Angel:SAE, 2003.
[9] REINHALL P G, GHASSAEI S, CHOO V. An analysis of rivet die design in electromagnetic riveting[J]. Journal of Vibration Acoustics Stress and Reliability in Design-transactions of ASME, 1988, 110(1):65-69.
[10] 王云渤, 张关康, 冯宗律. 飞机装配工艺学[M]. 北京:国防工业出版社, 1990:1-5. WANG Y B, ZHANG G K, FENG Z L. Aircraft assembly technology[M]. Beijing:National Defense Industry Press, 1990:1-5(in Chinese).
[11] 刘连喜, 李西宁, 王仲奇, 等. 无头铆钉自动钻铆工艺试验研究[J]. 西北工业大学学报, 2013, 31(1):77-82. LIU L X, LI X N, WANG Z Q, et al. Semi-empirical research on automatic drilling and riveting process of headless rivet[J]. Journal of Northwestern Polytechnical University, 2013, 31(1):77-82(in Chinese).
[12] JOHN H. Development of the handheld low voltage electromagnetic riveter[J]. SAE Transactions, 1990, 99(1):2371-2385.
[13] DENG J H, YU H P, LI C F. Numerical and experimental investigation of electromagnetic riveting[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2009, 499(1-2):242-247.
[14] 李志尧, 佘公藩, 陶华, 等. 应力波铆接[J]. 航空制造工程, 1989, 44(2):10-13. LI Z Y, SHE G F, TAO H, et al. Stress wave riveting[J]. Aviation Engineering & Maintenance, 1989, 44(2):10-13(in Chinese).
[15] 张岐良, 曹增强, 秦龙刚, 等. 钛合金电磁铆接数值模拟[J]. 稀有金属材料与工程, 2013, 42(9):1832-1837. ZHANG Q L, CAO Z Q, QIN L G, et al. Numerical simulation of electromagnetic riveting for titanium alloy[J]. Rare Metal Materials and Engineering, 2013, 42(9):1832-1837(in Chinese).
[16] 王礼立. 应力波基础[M]. 北京:国防工业出版社, 2005:42-46. WANG L L. The basis of the stress wave theory[M]. Beijing:National Defense Industry Press, 2005:42-46(in Chinese).
[17] DENG J H, TANG C, FU M W. Effect of discharge voltage on the deformation of Ti Grade 1 rivet in electromagnetic riveting[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2014, 591:26-32.
[18] LIN G Y. Aviation manufacturing engineering handbook[M]. Beijing:Aviation Industry Press, 1993:126-130(in Chinese). 林更元. 航空制造工程手册[M]. 北京:航空工业出版社, 1993:126-130.
[19] 万胜狄. 金属塑性成形原理[M]. 北京:机械工业出版社, 1995:32. WAN S D. Principles of metal forming[M]. Beijing:China Machine Press, 1995:32(in Chinese).
[20] 曹增强. 铆接技术发展状况[J]. 航空维修与工程, 2000, 45(6):41-42. CAO Z Q. The development of riveting technology[J]. Aviation Maintenance & Engineering, 2000, 45(6):41-42(in Chinese).
[21] CROCCOLO D, AGOSTINIS M D, CESCHINI L, et al. Interference fit effect on improving fatigue life of a holed single plate[J]. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36(7):689-698.
[22] 张克明. 飞机生产中不协调问题的原因及解决办法[J]. 南京航空航天大学学报, 1995, 27(2):221-228. ZHANG K M. The cause and solution in coordination of aircraft assembly[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1995, 27(2):221-228(in Chinese).

文章导航

/