流体力学与飞行力学

大展弦比大柔性机翼载荷分布求解的一种方法

  • 段静波 ,
  • 周洲 ,
  • 王伟 ,
  • 江涛 ,
  • 王睿
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 军械工程学院 无人机工程系, 石家庄 050003
段静波,男,博士,讲师。主要研究方向:飞行器气动弹性分析。Tel:0311-87994825,E-mail:duanjingbo@nudt.edu.cn;周洲,女,博士,教授,博士生导师。主要研究方向:飞行器设计、飞行器气动弹性分析。Tel:029-88453368,E-mail:zhouzhou@nwpu.edu.cn

收稿日期: 2015-03-27

  修回日期: 2015-05-08

  网络出版日期: 2015-05-14

基金资助

国家自然科学基金(11202162);中国博士后科学基金(2014M560803)

A method for aeroelastic load redistribution of very flexible wing with a high-aspect-ratio

  • DUAN Jingbo ,
  • ZHOU Zhou ,
  • WANG Wei ,
  • JIANG Tao ,
  • WANG Rui
Expand
  • 1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Department of UAV Engineering, Ordnance Engineering College, Shijiazhuang 050003, China

Received date: 2015-03-27

  Revised date: 2015-05-08

  Online published: 2015-05-14

Supported by

National Natural Science Foundation of China(11202162);China Postdoctoral Science Foundation(2014M560803)

摘要

大展弦比大柔性机翼在气动力作用下产生较大的弯曲和扭转变形,会引起明显的气动载荷重新分布。基于一种只具有2个广义转角自由度的梁单元模型,提出了一种大展弦比大柔性机翼载荷重新分布的新方法。该方法将大柔性机翼弯曲变形的几何非线性问题转化为线性问题,同时,基于弯曲变形结果,可在局部坐标系下进行机翼扭转变形求解,避免了整体坐标系下扭转变形的几何非线性问题。综合来看,该方法可将具有明显几何非线性效应的大展弦比大柔性机翼的载荷重新分布问题转化为线性问题,且计算量小,效率高,非常适合工程实用。通过与大柔性悬臂梁解析解的对比,验证了本文方法的正确性和有效性。

本文引用格式

段静波 , 周洲 , 王伟 , 江涛 , 王睿 . 大展弦比大柔性机翼载荷分布求解的一种方法[J]. 航空学报, 2016 , 37(3) : 799 -809 . DOI: 10.7527/S1000-6893.2015.0127

Abstract

Very flexible wing of the aircraft with a high-aspect-ratio under goes large bend and twist deformation, which leads to a distinct redistribution of the aeroelastic load. A new method is developed for the aeroelastic load redistribution of the flexible wing based on a new beam element with only two degree of freedoms(two general bend angles). By using the beam element, the complex geometrically nonlinear computation for the bend deformation of the wing is converted to be a simple linear problem. Meanwhile, the twist deformation of the wing can be linearly solved in the local coordinate system, avoiding the complex geometrically nonlinear computation in the global coordinate system. In a word, the present method simplifies the aeroelastic load redistribution of the flexible wing through transforming a geometrically nonlinear problem to be a linear one. The results are in a very good agreement with the analytical solutions and indicate that the present method is accurate and efficient for engineering practice.

参考文献

[1] RODDEN W, JOHNSON E. MSC/Nastran aeroelastic analysis user's guide[M]. New York:the MacNeal-Schwendler Corporation, 1994:1-4.
[2] PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelastic and flight dynamics of hight-altitude long-edurance aircraft:AIAA-1999-1470[R]. Reston:AIAA, 1999.
[3] NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the helios prototype aircraft mishap[R]. Washington, D.C.:NASA, 2004.
[4] PATIL M J, HODGES D H. On the importance of aerodynamic and structural nonlinearities in aeroelastic behavior of high-aspect-ratio wings:AIAA-2000-1448[R]. Reston:AIAA, 2000.
[5] PATIL M J, HODGES D H. Limit cycle oscillations in high-aspect-ratio wings:AIAA-1999-1464[R]. Reston:AIAA, 1999.
[6] TANG D M, DOWELL E H. Comments on the onera stall aerodynamic model and its impact on aeroelastic stability[J]. Journal of Fluids & Structures, 1996, 10(4):353-366.
[7] XIE C C, LENG J Z, YANG C. Geometrical nonlinear aeroelastic stability analysis of a composite high-aspect-ratio wing[C]//International Conference on Engineering Dynamics, 2007.
[8] 谢长川, 吴志刚, 杨超. 大展弦比柔性机翼的气动弹性分析[J]. 北京航空航天大学学报, 2003, 29(12):1087-1091. XIE C C, WU Z G, YANG C. Aeroelastic analysis of flexible large aspect ratio wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12):1087-1091(in Chinese).
[9] 杨超, 王立波, 谢长川, 等. 大变形飞机配平与飞行载荷分析方法[J]. 中国科学, 2012, 42(10):1137-1147. YANG C, WANG L B, XIE C C, et al. Aeroelastic trim and flight loads analysis of flexible aircraft with large deformations[J]. Sci China Tech Sci, 2012, 42(10):1137-1147(in Chinese).
[10] 谢长川, 杨超. 大展弦比飞机几何非线性气动弹性稳定性的线性化方法[J]. 中国科学, 2011, 41(3):385-393. XIE C C, YANG C. Linearization method of nonlinear aeroelastic stability for complete aircraft with high-aspect-ratio wings[J]. Sci China Tech Sci, 2011, 41(3):385-393(in Chinese).
[11] 王伟, 周洲, 祝小平, 等. 考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J]. 西北工业大学学报, 2014, 32(4):499-505. WANG W, ZHOU Z, ZHU X P, et al. Static aeroelastic analysis of a very flexible solar powered UAV with Geometrical nonlinear effect considered[J]. Jounal of Northwestern Polytechnical University, 2014, 32(4):499-505(in Chinese).
[12] 王伟, 周洲, 祝小平, 等. 几何大变形太阳能无人机非线性气动弹性稳定性研究[J]. 西北工业大学学报, 2015, 33(1):1-7. WANG W, ZHOU Z, ZHU X P, et al. Exploring aeroelastic stability of very flexible solar powered UAV with geometrically large deformation[J]. Jounal of Northwestern Polytechnical University, 2015, 33(1):1-7(in Chinese).
[13] PALACIOS R, CESNIK C S. Static nonlinear aeroelasticity of flexible slender wings in compressible flow:AIAA-2005-1945[R]. Reston:AIAA, 2005.
[14] 张健, 向锦武. 侧向随动力作用大展弦比柔性机翼的稳定性[J]. 航空学报, 2010, 31(11):2115-2124. ZHANG J, XIANG J W. Stability of high-aspect-ratio flexible wings loaded by a lateral follower force[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2115-2124(in Chinese).
[15] 张健. 柔性飞机非线性气动弹性与飞行动力学耦合建模与仿真[D]. 北京:北京航空航天大学, 2010. ZHANG J. Modeling and simulation of coupled aeroelasticity adm flight dynamics for flexible aircraft[D]. Beijing:Beihang University, 2010(in Chinese).
[16] ZHANG J, XIANG J W. Nonlinear aeroelastic response of high-aspect-ratio flexible wings[J]. Chinese Journal of Aeronautics, 2009, 22(4):355-363.
[17] 王勖成, 邵敏. 有限单元法基本原理和数值方法[M]. 北京:清华大学出版社, 1997:30-32. WANG X C, SHAO M. Fundamental principle and numerical method of the finite element method[M]. Beijing:Tsinghua University Press, 1997:30-32(in Chinese).
[18] 赵永辉. 气动弹性力学与控制[M]. 北京:科学出版社, 2006:21-25. ZHAO Y H. Aeroelastic mechanics and control[M]. Beijing:Science Press, 2006:21-25(in Chinese).
[19] KIRK F, BOB C. Pathfinder solar-powered aircraft flight performance:AIAA-1998-4446[R]. Reston:AIAA,1998.
[20] YOUNGBLOOD J W, TALAY T A. Solar-powered airplane design for long-endurance, high-altitude flight:AIAA-1982-0811[R]. Reston:AIAA, 1982.

文章导航

/