电子与控制

顺轨拦截模式剩余飞行时间估计方法

  • 李辕 ,
  • 闫梁 ,
  • 赵继广 ,
  • 陈景鹏
展开
  • 1. 装备学院 研究生院, 北京 101416;
    2. 装备学院 航天装备系, 北京 101416;
    3. 装备学院 科研部, 北京 101416
李辕 男, 博士研究生。主要研究方向: 航天任务分析与设计。 Tel: 010-66364196 E-mail: Bartholomew_lee@hotmail.com;赵继广 男, 博士, 教授, 博士生导师。主要研究方向: 航天装备总体。 Tel: 010-66364366 E-mail: haofangshi@163.com

收稿日期: 2014-05-04

  修回日期: 2015-04-20

  网络出版日期: 2015-05-12

基金资助

国家"863"计划

Method of time-to-go estimation for head-pursuit interception mode

  • LI Yuan ,
  • YAN Liang ,
  • ZHAO Jiguang ,
  • CHEN Jingpeng
Expand
  • 1. Department of Postgraduate, Academy of Equipment, Beijing 101416, China;
    2. Department of Spaceflight Equipment, Academy of Equipment, Beijing 101416, China;
    3. Department of Scientific Research, Academy of Equipment, Beijing 101416, China

Received date: 2014-05-04

  Revised date: 2015-04-20

  Online published: 2015-05-12

Supported by

National High-tech Research and Development Program of China

摘要

匹配顺轨和逆轨拦截模式的估计方法是精确计算剩余飞行时间(TGO)的必要条件,适用于逆轨拦截模式的TGO估计方法并不适于顺轨拦截模式。为此,针对顺轨拦截模式,分别提出了拦截机动/非机动目标的TGO估计方法。通过对线性制导方程的变形求解出了拦截弹的飞行弧长,并根据预测的碰撞点位置求得了TGO估计的解析式。该求解方法通用性强,适用于弹道成型制导律的TGO估计。以负比例(RPN)和扩展RPN(ARPN)为制导框架,与经典方法进行对比,所提出的TGO估计方法精确度高,能够有效提高导弹的制导性能。

本文引用格式

李辕 , 闫梁 , 赵继广 , 陈景鹏 . 顺轨拦截模式剩余飞行时间估计方法[J]. 航空学报, 2015 , 36(9) : 3082 -3091 . DOI: 10.7527/S1000-6893.2015.0107

Abstract

The estimation method suiting head-on and head-pursuit interception mode is the necessary condition of accurate time-to-go (TGO) calculation, and the method of TGO estimation is appropriate for head-on engagement but not for head-pursuit engagement. Therefore, the methods of TGO estimation for the interception of nonmaneuvering and maneuvering targets are proposed in head-pursuit interception mode. Through transforming the linear guidance equation, the flight arc of interceptor is solved; according to the predicted position of impact point, the analytic expressions of TGO estimation are obtained. The idea of TGO method has wide versatility and can be used in TGO estimation of trajectory shaping guidance. Simulations are carried out with classical method for verifying its validity based on retro-proportional-navigation (RPN) and augment RPN (ARPN). Compared with the classical method, it is demonstrated that the proposed TGO estimation method has high accuracy and is able to improve the guidance performance effectively for missile.

参考文献

[1] Adler F P. Missile guidance by three-dimensional proportional navigation[J]. Journal of Applied Physics, 1956, 27(5): 500-507.
[2] Yang C D, Yang C C. Analytical solution of three-dimensional realistic true proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 569-577.
[3] Riggs T L, Jr. Linear optimal guidance for short range air-to-air missiles[C]//Proceedings of National Aerospace and Electronics Conference NAECON'79. Piscataway, NJ: IEEE Press, 1979: 757-764.
[4] Jeon I, Lee J, Tahk M. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260-266.
[5] Dhananjay N, Ghose D. Accurate time-to-go estimation for proportional navigation guidance[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4): 1378-1383.
[6] Tahk M J, Ryoo C K, Cho H. Recursive time-to-go estimation for homing guidance missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 13-24.
[7] Zhang Y A, Ma G X. Time-to-go estimation algorithm for the proportional navigation guidance law with a large lead angle[J]. Journal of Harbin Engineering University, 2013,34(11): 1409-1414 (in Chinese). 张友安, 马国欣. 大前置角下比例导引律的剩余时间估计算法[J]. 哈尔滨工程大学学报, 2013, 34(11): 1409-1414.
[8] Ma G X, Zhang Y A, Li J. Guidance law with multiple constraints and seeker field-of -view limit and the time-to-go estimation[J]. Systems Engineering and Electronics, 2014, 36(8): 1609-1613 (in Chinese). 马国欣, 张友安, 李君. 带导引头视场限制的多约束导引律及剩余时间估计[J]. 系统工程与电子技术, 2014, 36(8): 1609-1613.
[9] Liu P, Sun R, Li W. Homing guidance law with falling angle and flying time control[J]. Journal of Harbin Institute of Technology, 2014, 21(1): 55-61.
[10] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 724-732.
[11] Kim T H, Lee C H, Tahk M J. Time-to-go polynomial guidance with trajectory modulation for observability enhancement[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 55-73.
[12] Prasanna H M, Ghose D. Retro-proportional-navigation: A new guidance law for interception of high-speed targets[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 377-386.
[13] Shima T. Intercept-angle guidance[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2): 484-492.
[14] Tal S, Golan O M. Head pursuit guidance[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1437-1444.
[15] Zarchan P. Tactical and strategic missile guidance[M]. 37rd ed. Reston: AIAA, 2002: 15.
[16] Siouris G M. Missile guidance and control systems[M]. Berlin: Springer, 2004: 195-196.
[17] Ben-Asher J Z, Farber N, Levinson S. New proportional navigation law for ground-to-air systems[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(5): 822-825.
[18] Byung S K, Jang G L, Hyung S H. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288.
[19] Akhil G, Ghose D. Biased PN based impact angle constrained guidance using a nonlinear engagement model[C]//Proceedings of 2012 American Control Conference (ACC).Piscataway, NJ: IEEE Press, 2012: 950-955.
[20] Yuan P, Chern J. Ideal proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(5): 1161-1165.

文章导航

/