湍流边界层厚度对三维空腔流动的影响
收稿日期: 2015-03-06
修回日期: 2015-04-24
网络出版日期: 2015-04-30
基金资助
国家"973"计划(613240);空气动力学国家重点实验室研究基金(SKLA20140302)
Effect of turbulent boundary layer thickness on a three-dimensional cavity flow
Received date: 2015-03-06
Revised date: 2015-04-24
Online published: 2015-04-30
Supported by
National Basic Research Program of China(613240);State Key Laboratory of Aerodynamics Foundation(SKLA20140302)
采用脱体涡模拟(DES)方法开展了不同湍流边界层厚度(TTBL)下的三维空腔非定常流动数值计算。空腔长、宽、深比例为5:1:1,来流马赫数为0.85,雷诺数为13.47×106 m-1,各工况湍流边界层厚度比值为1:2:4:8。研究结果表明,湍流边界层厚度对自由剪切层的发展、空腔底部静态压力分布、脉动压力及空腔流动类型均有重要影响,且随着边界层厚度的增大,下游剪切层覆盖的范围会增大,但是剪切层增长率降低;空腔前后静态压力压差减小、压力梯度下降;腔内局部测点的脉动压力声压级下降,各阶声压峰值频率向低频方向偏移;空腔流动类型往开式流动方向转换。
刘俊 , 杨党国 , 王显圣 , 罗新福 . 湍流边界层厚度对三维空腔流动的影响[J]. 航空学报, 2016 , 37(2) : 475 -483 . DOI: 10.7527/S1000-6893.2015.0112
Unsteady numerical computation of a three-dimensional cavity with different thicknesses of turbulent boundary layer(TTBL) is conducted using the detached eddy simulation(DES) modeling approach. The rectangular cavity has an aspect ratio of 5:1:1, the Mach number is 0.85 and Reynolds number is 13.47×106 m-1. Four calculated TTBLs are at the ratio of 1:2:4:8. The results show that TTBL has a significant effect on the evolution of free shear layer, cavity floor pressure distribution, pressure fluctuation and cavity flow type. With the increase of TTBL, the region covered by free shear layer becomes larger but TTBL grows more slowly; the pressure differential between leading edge and trailing edge drops down and pressure gradient along the cavity floor also decreases. Meanwhile, sound pressure level of pressure fluctuation reduces, peaks of tonal modes transfer to lower frequencies and the cavity flow tends to open flow type with thicker turbulent boundary layer.
[1] HUANG W, POURKASHANIAN M, MA L, et al. Investigation on the flameholding mechanisms in supersonic flows:Backward-facing step and cavity flameholder[J]. Journal of Visualization, 2011, 14(1):63-74.
[2] XIAO L, XIAO Z, DUAN Z, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150.
[3] PLENTOVICH E B, STALLINGS R L, TRACY M B. Experimental cavity pressure measurements at subsonic and transonic speeds:Static-pressure results:NASA TP-3358[R]. Washington, D.C.:NASA, 1993.
[4] TRACY M B, PLENTOVICH E B. Cavity unsteady-pressure measurements at subsonic and transonic speeds:NASA TP-3669[R]. Washington, D.C.:NASA, 1997.
[5] STALLINGS R L, JR, WILCOX F J, JR. Experimental cavity pressure distributions at supersonic speeds:NASA TP-2683[R]. Washington, D.C.:NASA, 1987.
[6] PLENTOVICH E B. Three-dimensional cavity flow fields at subsonic and transonic speeds:NASA TM-4209[R]. Washington, D.C.:NASA, 1990.
[7] DE M J, HENSHAW C. M219 cavity case:Verification and validation data for computational unsteady aerodynamics:TR RTO-TR-26, AC/323(AVT) TP/19[R]. 2000.
[8] 杨党国, 罗新福, 李建强, 等. 来流边界层厚度对开式空腔气动声学特性的影响分析[J]. 空气动力学学报, 2011, 29(4):486-490. YANG D G, LUO X F, LI J Q, et al. Analysis of aeroacoustic characteristics in open cavities influenced by boundary-layer thickness[J]. Acta Aerodynamica Sinica, 2011, 29(4):486-490(in Chinese).
[9] 杨党国, 李建强, 范召林, 等. 超声速来流边界层厚度对浅腔声学特性的影响[J]. 航空动力学报, 2010, 25(4):907-911. YANG D G, LI J Q, FAN Z L, et al. Shallow cavity noise influencing by boundary-layer thickness at supersonic speeds[J]. Journal of Aerospace Power, 2010, 25(4):907-911(in Chinese).
[10] 侯中喜, 易仕和, 王承尧. 超声速开式空腔流动的数值模拟[J]. 推进技术, 2001, 22(5):400-403. HOU Z X, YI S H, WANG C Y. Numerical analysis of supersonic open cavity[J]. Journal of Propulsion Technology, 2001, 22(5):400-403(in Chinese).
[11] 张宝兵. 空腔流动的机理模拟和控制[D]. 南京:南京航空航天大学, 2011. ZHANG B B. Numerical simulation and control of cavity flow[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
[12] LEVASSEUR V, SAGAUT P, MALLET M, et al. Unstructured large eddy simulation of the passive control of the flow in a weapon bay[J]. Journal of Fluids and Structures, 2008, 24(8):1204-1215.
[13] RONA A, CHEN X X, ZHANG X, et al. Control of cavity flow scillation through leading edge flow modification:AIAA-1998-0672[R]. Reston:AIAA, 1998.
[14] 管德会, 蔡为民. 扰流板对内埋导弹偏航姿态角的影响[J]. 航空学报, 2014, 35(4):942-947. GUAN D H, CAI W M. Spoiler's effect on the yawing attitude angle of the missile in the bay[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):942-947(in Chinese).
[15] GLOERFELT X. "Cavity noise", arts et metiers paristech, laboratoire de simulation numérique en mécaniques des fluides[EB/OL](2009)[2015-03-06]. http://sin-web.paris.ensam.fr/squelettes/ref_biblio/Gloerfelt_VKI_2009a.pdf.
[16] CROOK S D, LAU T C W, KELSO R M. Three-dimensional flow within shallow, narrow cavities[J]. Journal of Fluid Mechanics, 2013, 735:587-612.
[17] LARCHEVÊQUE L, SAGAUT P, LE T H, et al. Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number[J]. Journal of Fluid Mechanics, 2004, 516:265-301.
[18] BASLEY J, PASTUR L R, LUSSEYRAN F, et al. On the modulating effect of three-dimensional instabilities in open cavity flows[J]. Journal of Fluid Mechanics, 2014, 759:546-578.
[19] GAI S L, KLEINE H, NEELY A J. Supersonic flow over a shallow open rectangular cavity[J]. Journal of Aircraft, 2014, 52(2):609-616.
[20] TUNA B A, ROCKWELL D. Self-sustained oscillations of shallow flow past sequential cavities[J]. Journal of Fluid Mechanics, 2014, 758:655-685.
[21] BRÈS G A, COLONIUS T. Three-dimensional instabilities in compressible flow over open cavities[J]. Journal of Fluid Mechanics, 2008, 599:309-339.
[22] HAASE W, BRAZA M, REVELL A. DESider-A European effort on hybrid RANS-LES modelling:Results of the European-Union Funded Project, 2004-2007[M]. Berlin:Springer Science & Business Media, 2009:270-285.
[23] 司海青, 王同光. 边界条件对三维空腔流动振荡的影响[J]. 南京航空航天大学学报, 2006, 38(5):595-599. SI H Q, WANG T G. Influence of boundary condition on 3-D cavity flow-induced oscillations[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(5):595-599(in Chinese).
[24] ZHANG X, EDWARDS J A. Computational analysis of unsteady supersonic cavity flows driven by thick shear layers[J]. Aeronautical Journal, 1988, 92(119):365-374.
[25] RONA A, DIEUDONNÉ W. Unsteady laminar and turbulent cavity flow models by second order upwind methods:AIAA-1999-0656[R]. Reston:AIAA, 1999.
[26] STANEK M J, VISBAL M R, RIZZETTA D P, et al. On a mechanism of stabilizing turbulent free shear layers in cavity flows[J]. Computers & Fluids, 2007, 36(10):1621-1637.
[27] PENG S H. Simulation of turbulent flow past a rectangular open cavity using DES and unsteady RANS:AIAA-2006-2827[R]. Reston:AIAA, 2006.
[28] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3):186-216.
[29] VAKILI A D, GAUTHIER C. Control of cavity flow by upstream mass injection[J]. Journal of Aircraft, 1994, 31(1):169-174.
[30] ROSSITER J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. Farnborough:Ministry of Aviation, Royal Aircraft Establishment, 1964.
/
〈 | 〉 |