机翼后缘柔性支撑结构的拓扑优化
收稿日期: 2015-04-09
修回日期: 2015-04-13
网络出版日期: 2015-04-27
基金资助
国家自然科学基金(91016022); 江苏高校优势学科建设工程
Topology optimization of flexible support structure for trailing edge
Received date: 2015-04-09
Revised date: 2015-04-13
Online published: 2015-04-27
Supported by
National Natural Science Foundation of China (91016022); Priority Academic Program Development of Jiangsu Higher Education Institutions
针对机翼后缘柔性支撑结构的多目标拓扑优化问题,分析了柔性支撑结构的优化目标及目标函数,并采用位矩阵表示机翼后缘柔性支撑结构,利用非支配排序遗传算法(NSGA-Ⅱ)对该优化问题进行了求解。在优化过程中,引入连通性分析和相似个体过滤,借助ANSYS对可行个体进行有限元分析(FEA),获得了结构质量、变形性能和承载能力等目标值。通过MATLAB对违约个体进行惩罚,实现了位矩阵表示的NSGA-Ⅱ,得到了一组互不支配的机翼后缘柔性支撑优化结构,可根据实际需求选择这些相应的拓扑结构。结果表明,本方法可为机翼后缘柔性支撑结构的拓扑优化提供可行、有效的解。
金栋平 , 纪斌 . 机翼后缘柔性支撑结构的拓扑优化[J]. 航空学报, 2015 , 36(8) : 2681 -2687 . DOI: 10.7527/S1000-6893.2015.0105
Non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) with connectivity analysis is employed for the multi-objective topology optimization of the flexible support structure for morphing trailing edge, in which bit-matrix is used as the representation of a chromosome. Starting with the analysis of optimization target of the flexible support structure for trailing edge, the objective functions of multi-objective topology optimization are established. In order to improve the efficiency and make the optimization results better, the connectivity analysis and similar individual filter are put forward. The objectives such as mass, performances of deformation and load bearing ability of the feasible individuals are obtained by finite element analysis (FEA) using ANSYS, and the bit-matrix-based NSGA-Ⅱ is realized in MATLAB by penalizing the infeasible individuals. Subsequently, the feasible configurations of the support structure are obtained. The results show that the bit-matrix-based NSGA-Ⅱ with the connectivity analysis and similar individual filter can provide feasible and effective solutions for multi-objective topology optimization of the flexible support structure for morphing trailing edge.
[1] Barbarino S, Bilgen O, Ajaj R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877.
[2] Sofla A Y N, Meguid S A, Tan K T, et al. Shape morphing of aircraft wing: status and challenges[J]. Materials Design, 2010, 31(3): 1284-1292.
[3] Joshi S P, Tidwell Z, Crossley W A, et al. Comparison of morphing wing strategies based upon aircraft performance impacts[C]//Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2004: 1722-1729.
[4] Ahmed S, Guo S. Optimal design and analysis of a wing with morphing high lift devices[C]//Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013: 1880-1895.
[5] Vasista S, Tong L, Wong K C. Realization of morphing wings: a multidisciplinary challenge[J]. Journal of Aircraft, 2012, 49(1): 11-28.
[6] Midha A, Norton T W, Howell L L. On the nomenclature, classification, and abstractions of compliant mechanisms[J]. Journal of Mechanical Design, 1994, 116(1): 270-279.
[7] De Gaspari A, Ricci S. A two-level approach for the optimal design of morphing wings based on compliant structures[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10): 1091-1111.
[8] Saggere L, Kota S. Static shape control of smart structures using compliant mechanisms[J]. AIAA Journal, 1999, 37(5): 572-578.
[9] Kota S, Hetrick J A, Osborn R, et al. Design and application of compliant mechanisms for morphing aircraft structures[C]//Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies. San Diego: Society of Photo-Optical Instrumentation Engineers, 2003: 24-33.
[10] Podugu P, Ananthasuresh G K. Topology optimization-based design of a compliant aircraft wing for morphing leading and trailing edges[C]//Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver: American Society of Mechanical Engineer, 2010: 1099-1107.
[11] Liu S L, Ge W J, Li S J. Optimal design of compliant trailing edge for shape changing[J]. Chinese Journal of Aeronautics, 2008, 21(2): 187-192.
[12] Chen X, Ge W J, Zhang Y H. Investigation on synthesis optimization for shape morphing compliant mechanisms using GA[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5): 1230-1235 (in Chinese). 陈秀, 葛文杰, 张永红. 基于遗传算法的柔性机构形状变化综合优化研究[J]. 航空学报, 2007, 28(5): 1230-1235.
[13] Huang J, Ge W J, Yang F. Topology optimization of the compliant mechanism for shape change of airfoil leading edge[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 988-992 (in Chinese). 黄杰, 葛文杰, 杨方. 实现机翼前缘形状连续变化柔性机构拓扑优化[J]. 航空学报, 2007, 28(4): 988-992.
[14] Tong X, Ge W, Sun C, et al. Topology optimization of compliant adaptive wing leading edge with composite materials[J]. Chinese Journal of Aeronautics, 2014, 27(6): 1488-1494.
[15] Bendsøe M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 4(1): 193-202.
[16] Sigmund O. A 99 line topology optimization code written in MATLAB[J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 120-127.
[17] Sigmund O. Morphology-based black and white filters for topology optimization[J]. Structural and Multidisciplinary Optimization, 2007, 33(4-5): 401-424.
[18] Sethian J A, Wiegmann A. Structural boundary design via level set and immersed interface methods[J]. Journal of Computational Physics, 2000, 163(2): 489-528.
[19] Jakiela M J, Chapman C, Duda J, et al. Continuum structural topology design with genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2): 339-356.
[20] Wang S Y, Tai K. Structural topology design optimization using genetic algorithms with a bit-array representation[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(36): 3749-3770.
[21] Wang S Y, Tai K. Graph representation for structural topology optimization using genetic algorithms[J]. Computers & Structures, 2004, 82(20): 1609-1622.
[22] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
/
〈 | 〉 |