固体力学与飞行器总体设计

基于实测值的舰载机着舰下沉速度影响性分析

  • 冯蕴雯 ,
  • 刘思宏 ,
  • 薛小锋 ,
  • 崔帅 ,
  • 潘文廷
展开
  • 1. 西北工业大学航空学院, 西安 710072;
    2. 中国科学院上海微小卫星工程中心, 上海 200050;
    3. 中国航空工业集团公司第一飞机设计研究院, 西安 710089
冯蕴雯,女,博士,教授。主要研究方向:飞行器设计与可靠性设计。Tel:029-88460383,E-mail:fengyunwen@nwpu.edu.cn;刘思宏,女,硕士研究生。主要研究方向:飞行器结构设计。Tel:029-88492045,E-mail:shlove123@nwpu.edu.cn;薛小锋,男,博士,讲师。主要研究方向:飞行器设计与可靠性设计。Tel:029-88460383,E-mail:xuexiaofeng@mail.nwpu.edu.cn;崔帅,男,硕士,高级工程师。主要研究方向:飞行器可靠性。Tel:029-88460383,E-mail:cshuai@eyou.com;潘文廷,男,硕士,高级工程师。主要研究方向:飞机起落架强度。Tel:029-88460383,E-mail:panwenting@nwpu.edu.cn

收稿日期: 2014-12-02

  修回日期: 2015-04-02

  网络出版日期: 2015-04-27

基金资助

国家自然科学基金(10577015);航空科学基金(2008ZA53006,2006ZD53050)

Sinking velocity impact analysis of carrier-based aircraft based on test data

  • FENG Yunwen ,
  • LIU Sihong ,
  • XUE Xiaofeng ,
  • CUI Shuai ,
  • PAN Wenting
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Shanghai Engineering Center for Microsatellites, Chinese Academy of Sciences, Shanghai 200050, China;
    3. The First Aircraft Institute, AVIC, Xi'an 710089, China

Received date: 2014-12-02

  Revised date: 2015-04-02

  Online published: 2015-04-27

Supported by

National Natural Science Foundation of China (10577015);Aeronautical Science Foundation of China (2008ZA53006, 2006ZD53050)

摘要

舰载机的着舰下沉速度是起落架设计的重要输入,对起落架和机体的结构重量有很大影响。为了探索舰载机使用环境下各相关参数对下沉速度的影响,基于E-2C的实测着舰数据,将多元统计学的相关分析方法应用到舰载机着舰参数影响性分析,分析了17个着舰参数与着舰下沉速度的相关性。结果表明飞机下滑角、甲板俯仰角与下沉速度呈高度相关,舰上接合速度与下沉速度呈中度相关,这三者对下沉速度有很大影响;并进一步对这4个着舰参数进行非线性回归分析,拟合了E-2C着舰下沉速度的计算式,所得回归模型决定系数为0.991,平均绝对误差为1.66%,拟合效果很好。

本文引用格式

冯蕴雯 , 刘思宏 , 薛小锋 , 崔帅 , 潘文廷 . 基于实测值的舰载机着舰下沉速度影响性分析[J]. 航空学报, 2015 , 36(11) : 3578 -3585 . DOI: 10.7527/S1000-6893.2015.0097

Abstract

The sinking velocity of carrier-based aircraft is an important input for landing gear design and has a great influence on the weight of the landing gear and airframe structure. Aimed at exploring the effect of the various related landing parameters on sinking velocity for carrier-based aircraft in the actual service environment and based on E-2C measured landing data, correlation analysis of multivariate statistics is applied to the impact analysis of landing parameters on sinking velocity. Seventeen landing parameters are analyzed in the compaction-analysis and the results show that aircraft glide path angle and deck pitch angle are highly correlated with sinking velocity; engaging velocity is moderately correlated with sinking velocity. These three parameters have a great influence on sinking velocity. Nonlinear regression analysis is carried out on the four landing parameters and a fitting equation of E-2C sinking velocity is obtained. The coefficient of determination of the regression model is 0.991 and the mean absolute error is 1.66%, thus the model provides a preferable fitting effect.

参考文献

[1] Duan P P. Analysis for carrier-based aircraft during landing process[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).段萍萍.舰载飞机着舰过程动力学性能分析[D].南京:南京航空航天大学, 2012.
[2] Naval Air Systems Command. MIL-A-8863C(AS) Airplane strength and rigidity, ground loads for navy acquired airplanes[S]. Patuxent River, MD:Naval Air Systems Command, 1993.
[3] Naval Air Systems Command. JSSG-2006 Aircraft structures[S]. Patuxent River, MD:Naval Air Systems Command, 1998.
[4] Micklos R P. Carrier landing parameters from survey 45, fleet and training command aircraft landing aboard USS, Enterprise CVN-65(Appendices B through R)[R]. Warminster, PA:Naval Air Development Center, Warminster PA Air Vehicle and Crew Systems Technology Department, 1991.
[5] Geng J Z, Yao H L, Duan Z Y. Determining the approach speed envelope of carrier aircraft[J]. Engineering Sciences, 2013, 11(6):19-23.
[6] Lawrence J T, Draper-Donley M G. A review of min-imum control airspeed test methodologies for carrier-based aircraft[C]//2005 AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:American Institute of Aeronautics and Astronautics Inc., 2005, 1:333-357.
[7] Wang Z Q, Sun X Y, Zhou S, et al. Dynamics analysis of aircraft landing on the pitching deck[J]. Key Engineering Materials, 2011, 467-469:579-582.
[8] Zhu Q D, Meng X, Zhang Z. Simulation research on motion law of arresting hook during landing[J]. Applied Mechanics and Materials, 2013, 300-301:997-1002.
[9] Lv K D, Zhu Q D, Li X F. Modeling and simulation for arrested landing of carrier-based aircraft[C]//2011 International Conference on Mechatronics and Automation (ICMA). Washington, D.C.:IEEE Computer Society, 2011:1928-1933.
[10] Wang Q S. A preliminary research of sinking velocity for carrier-based aircraft[J]. Aircraft Design, 2007, 27(3):1-6(in Chinese).王钱生.关于舰载机着舰下沉速度的初步研究[J].飞机设计, 2007, 27(3):1-6.
[11] Nie H, Peng Y M, Wei X H, et al. Overview of carrier-based aircraft arrested deck-landing dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):1-12(in Chinese).聂宏,彭一明,魏小辉,等.舰载飞机着舰拦阻动力学研究综述[J].航空学报, 2014, 35(1):1-12.
[12] Yao N K, Sui F C, Wang C B. Free flight engagement condition of carrier-based aircraft[J]. Aircraft Design, 2011, 31(6):10-15(in Chinese).姚念奎,隋福成,王成波.舰载机的自由飞行钩住情况[J].飞机设计, 2011, 31(6):10-15.
[13] Xu D S, Wang L X, Jia Z R. Parameter matching characteristics of carrier-based aircraft during deck landing process[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):199-207(in Chinese).许东松,王立新,贾重任.舰载飞机着舰过程的参数适配特性[J].航空学报, 2012, 33(2):199-207.
[14] Li Q M, Feng Y W, Yu L M. Kinetics analysis and simulation of aircraft arrested shore-landing[J]. Computer Simulation, 2010, 27(1):27-31(in Chinese).李启明,冯蕴雯,于立明.飞机拦阻着陆动力学分析与仿真[J].计算机仿真, 2010, 27(1):27-31.
[15] Luo Q, Feng Y W, Feng Y S. Dynamic analysis and simulation of carrier aircraft arrested deck-landing based on kink-wave[J]. Journal of Mechanical Strength, 2009, 31(4):543-547(in Chinese).罗青,冯蕴雯,冯元生.基于弯折波的舰载机拦阻着舰动力学分析及仿真研究[J].机械强度, 2009, 31(4):543-547.
[16] Cui J H, Nie H, Zhang M, et al. Design optimization on shock absorbing performance of carrier-based aircraft landing gear[J]. Computer Aided Engineering, 2011, 20(1):88-93(in Chinese).崔俊华,聂宏,张明,等.舰载机起落架缓冲性能设计优化[J].计算机辅助工程, 2011, 20(1):88-93.
[17] Wei X H, Nie H. Study on landing impact force of carrier-based aircraft landing gears[J]. China Mechanical Engineering, 2007, 18(5):520-523(in Chinese).魏小辉,聂宏.舰载机起落架落震性能动力学仿真分析[J].中国机械工程, 2007, 18(5):520-523.
[18] Zhou S M. Simulation analysis on influence of carrier deck motion on carrier-based aircraft landing[J]. Aircraft Design, 2012, 32(6):28-32(in Chinese).周胜明.航母甲板运动对舰载机着舰影响仿真分析[J].飞机设计, 2012, 32(6):28-32.
[19] Xu D S, Liu X Y, Wang L X. Influence of carrier motion on landing safety for carrier-based airplanes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3):289-294(in Chinese).许东松,刘星宇,王立新.航母运动对舰载飞机着舰安全性的影[J].北京航空航天大学学报, 2011, 37(3):289-294.
[20] Li J M, Qi X E. Principle of statics[M]. Shanghai:Fudan University Press, 2014:333-341(in Chinese).李洁明,祁新娥.统计学原理[M].上海:复旦大学出版社, 2014:333-341.

文章导航

/