流体力学与飞行力学

基于分层思路的动态非线性气动力建模方法

  • 寇家庆 ,
  • 张伟伟 ,
  • 叶正寅
展开
  • 西北工业大学航空学院, 西安 710072
寇家庆,男,硕士研究生。主要研究方向:飞行器系统辨识,非定常空气动力学。Tel:029-88491342,E-mail:koujiaqing93@163.com;张伟伟,男,博士,教授,博士生导师。主要研究方向:气动弹性力学,非定常空气动力学。Tel:029-88491342,E-mail:aeroelastic@nwpu.edu.cn;叶正寅,男,博士,教授,博士生导师。主要研究方向:空气动力学,气动弹性力学。Tel:029-88491374,E-mail:yezy@nwpu.edu.cn

收稿日期: 2015-01-07

  修回日期: 2015-03-25

  网络出版日期: 2015-04-24

基金资助

国家自然科学基金(11172237, 11572252);新世纪优秀人才支持计划(NCET-13-0478)

Dynamic nonlinear aerodynamics modeling method based on layered model

  • KOU Jiaqing ,
  • ZHANG Weiwei ,
  • YE Zhengyin
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-01-07

  Revised date: 2015-03-25

  Online published: 2015-04-24

Supported by

National Natural Science Foundation of China (11172237, 11572252); Program for New Century Excellent Talents in University (NCET-13-0478)

摘要

很多非线性气动力模型难以精确预测系统的小扰动线性特征。针对这一局限,提出了一种非线性分层模型,用于辨识跨声速非线性非定常气动力。分层建模需要同时提供微幅振荡和大幅振荡两套训练样本,首先通过线性模型(如带外输入的自回归(ARX)模型)对微幅振荡样本进行建模,而后采用非线性模型(如径向基函数神经网络(RBFNN))对大幅振荡的样本与线性模型的差量进行建模,进而把线性模型和非线性模型的输出相叠加,得到分层非线性动力学模型。算例表明建立的分层气动力模型与单一自回归径向基函数(AR-RBF)神经网络模型相比不仅具有更高的数值精度,可以精确预测大幅运动中的非线性特征,而且在小扰动状态下自动退化为线性模型,能够精确刻画结构微幅振荡下的线性动力学特性。

本文引用格式

寇家庆 , 张伟伟 , 叶正寅 . 基于分层思路的动态非线性气动力建模方法[J]. 航空学报, 2015 , 36(12) : 3785 -3797 . DOI: 10.7527/S1000-6893.2015.0088

Abstract

It is found that many nonlinear aerodynamic models cannot accurately predict linear characteristics under small disturbances. Based on the above limitation, a nonlinear layered model for identifying transonic nonlinear unsteady aerodynamic forces is presented. Layered modeling process needs training samples of both small and large amplitude oscillations. Firstly, the linear model (autoregressive with exogenous input, ARX) is constructed with small amplitude maneuver and the nonlinear model (radial basis function neural network, RBFNN) is constructed with a deviation of a large amplitude maneuver and linear model samples. Then the superposition is done with the outputs of both linear and nonlinear model. Finally the layered, nonlinear dynamic model is obtained. Results show that the layered aerodynamic model has higher numerical accuracy than the autoregressive RBF (AR-RBF) neural network model. The layered model has the ability of predicting large amplitude maneuvers. For small disturbance, layered model is transformed into linear model automatically and can precisely describe the linear dynamic characteristics of small amplitude oscillation.

参考文献

[1] Zhang W W, Ye Z Y. On unsteady aerodynamic modeling based on CFD technique and its applications on aeroelastic analysis[J]. Advances in Mechanics, 2008, 38(1):77-86(in Chinese).张伟伟,叶正寅.基于CFD的气动力建模及其在气动弹性中的应用[J].力学进展, 2008, 38(1):77-86.
[2] Dowell E H, Hall K C. Modeling of fluid structure interaction[J]. Annual Review of Fluid Mechanics, 2001, 33(1):445-490.
[3] Ghoreyshi M, Jirasek A, Cummings R M. Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics[J]. Progress in Aerospace Sciences, 2014, 71(1):167-217.
[4] Chen G, Li Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6):686-700(in Chinese).陈刚,李跃明.非定常流场降阶模型及应用研究进展与展望[J].力学进展, 2011, 41(6):686-700.
[5] Cai J S. System identification of aircraft[M]. Beijing:National Defense Industry Press, 2003:1-10(in Chinese).蔡金狮.飞行器系统辨识学[M].北京:国防工业出版社,2003:1-10.
[6] Huang D, Tan J Z. Experiment about aircraft motion in large amplitude and aerodynamic modeling[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(4):407-410(in Chinese).黄达,谈佳桢.飞行器大振幅运动实验与气动力建模[J].南京航空航天大学学报, 2010, 42(4):407-410.
[7] Sun H S, Zhang H Y, Liu Z T. Comparative evaluation of unsteady aerodynamics modeling approaches at high angle of attack[J]. Acta Aerodynamica Sincia, 2011, 29(6):733-737(in Chinese).孙海生,张海酉,刘志涛.大迎角非定常气动力建模方法研究[J].空气动力学学报, 2011, 29(6):733-737.
[8] Hall K C, Thomas J P, Dowell E H. Reduced-order modeling of unsteady small-disturbance flows using a frequency-domain proper orthogonal decomposition technique, AIAA-1999-0655[R]. Reston:AIAA, 1999.
[9] Yang C, Liu X Y, Wu Z G. Unsteady aerodynamic modeling based on POD-observer method[J]. SCIENCE CHINA Technological Sciences, 2010, 40(8):861-866(in Chinese).杨超,刘晓燕,吴志刚.基于POD-observer技术的非定常气动力建模方法[J].中国科学:技术科学, 2010, 40(8):861-866.
[10] Chen G, Xu M, Chen S L. Reduced-order model based on Volterra series in nonlinear unsteady aerodynamics[J]. Journal of Astronautics, 2004, 25(5):492-495(in Chinese).陈刚,徐敏,陈士橹.基于Volterra级数的非线性非定常气动力降阶模型[J].宇航学报, 2004, 25(5):492-495.
[11] Wang B B, Zhang W W, Ye Z Y. On Unsteady nonlinear aerodynamics identification with neural network[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1379-1387(in Chinese).王博斌,张伟伟,叶正寅.基于神经网络模型的动态非线性气动力辨识方法[J].航空学报, 2010, 31(7):1379-1387.
[12] Gan X S, Duanmu J S, Meng Y B, et al. Aerodynamic modeling from flight data based on WNN optimized by particle swarm[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1209-1217(in Chinese).甘旭升,端木京顺,孟月波,等.基于粒子群优化的WNN飞行数据气动力建模[J].航空学报, 2012, 33(7):1209-1217.
[13] Zhang W W, Ye Z Y, Numerical simulation of aeroelasticity basting on identification technology of unsteady aerodynamic loads[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4):579-583(in Chinese).张伟伟,叶正寅.基于非定常气动力辨识技术的气动弹性数值模拟[J].航空学报, 2006, 27(4):579-583.
[14] Thomas J P, Hall K C, Dowell E H. A harmonic balance approach for modeling nonlinear aeroelastic behavior of wings in transonic viscous flow, AIAA-2003-1924[R]. Reston:AIAA, 2003.
[15] Zhang W W, Wang B B, Ye Z Y, et al. Efficient method for limit cycle flutter analysis by nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5):1019-1028.
[16] Marques F D, Anderson J. Identification and prediction of unsteady transonic aerodynamic loads by multi-layer functions[J]. Journal of Fluids and Structures, 2001, 15(1):83-106.
[17] Ghoreyshi M, Jirasek A, Cummings R M. Computational approximation of nonlinear unsteady aerodynamics using an aerodynamic model hierarrchy[J]. Aerospace Science and Technology, 2013, 28(1):133-144.
[18] Lindhorst K, Haupt M C, Horst P. Efficient surrogate modelling of nonlinear aerodynamics in aerostructural coupling schemes[J]. AIAA Journal, 2014, 52(9):1952-1966.
[19] Linse D J, Strengel R F. Identification of aerodynamic coefficients using computational neural networks[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(6):1018-1025.
[20] Faller W E, Schreck S J. Neural networks:applications and opportunities in aeronautics[J]. Progress in Aerospace Sciences, 1996, 32(1):433-456.
[21] Zhang W W. Efficient analysis for aeroelasticity based on computational fluid dynamics[D]. Xi'an:Northwestern Polytechnical University, 2006(in Chinese).张伟伟.基于CFD技术的高效气动弹性分析方法研究[D].西安:西北工业大学, 2006.
[22] Dowell E H, Ilgamov M. Studies in nonlinear aeroelasticity[M]. New York:Springer, 1988:212-222.

文章导航

/