流体力学与飞行力学

悬停状态共轴刚性双旋翼非定常流动干扰机理

  • 朱正 ,
  • 招启军 ,
  • 李鹏
展开
  • 南京航空航天大学直升机旋翼动力学国家级重点实验室, 南京 210016
朱正,男,博士研究生。主要研究方向:直升机旋翼气动噪声、计算流体力学、桨叶外形优化及共轴高速直升机气动布局优化设计。Tel:025-84893753,E-mail:zhuzheng@nuaa.edu.cn;李鹏,男,博士研究生。主要研究方向:旋翼计算流体力学、并行计算流体力学及倾转旋翼机气动布局设计。Tel:025-84893753,E-mail:lp1987@nuaa.edu.cn

收稿日期: 2015-01-04

  修回日期: 2015-04-15

  网络出版日期: 2015-04-21

基金资助

国家自然科学基金(11272150);江苏高校优势学科建设工程资助项目

Unsteady flow interaction mechanism of coaxial rigid rotors in hover

  • ZHU Zheng ,
  • ZHAO Qijun ,
  • LI Peng
Expand
  • National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-01-04

  Revised date: 2015-04-15

  Online published: 2015-04-21

Supported by

National Natural Science Foundation of China(11272150);Project Funded by the Priority Academic Development of Jiangsu Higher Education Institutions

摘要

基于运动嵌套网格方法,建立了一套适合于悬停状态下共轴刚性双旋翼非定常干扰流场分析的计算流体力学(CFD)方法。首先,基于高效的运动嵌套网格技术,采用积分形式的可压雷诺平均Navier-Stokes(RANS)方程作为双旋翼非定常流场求解控制方程,湍流模型选用Baldwin-Lomax模型,时间推进采用双时间方法。在CFD方法的验证基础之上,对干扰过程中的桨尖涡涡核位置及强度演变规律进行了细致分析,揭示了共轴双旋翼非定常干扰流场中上、下旋翼桨尖涡与双旋翼桨叶之间的贴近干扰、碰撞现象,以及上、下旋翼桨尖涡之间的相互干扰机理。然后,进一步研究了不同总距角下的共轴旋翼系统中上、下旋翼的非定常气动特性以及影响规律。计算结果表明:上旋翼桨叶的桨尖涡会直接与下旋翼桨叶发生碰撞,导致下旋翼桨叶拉力损失;上旋翼桨叶的桨尖涡和下旋翼桨叶的桨尖涡相互干扰,改变了桨尖涡的强度和轨迹;上、下旋翼桨叶相互靠近时,上、下旋翼桨叶的拉力均会上升,之后相互远离时上、下旋翼桨叶拉力均会先下降再上升。

本文引用格式

朱正 , 招启军 , 李鹏 . 悬停状态共轴刚性双旋翼非定常流动干扰机理[J]. 航空学报, 2016 , 37(2) : 568 -578 . DOI: 10.7527/S1000-6893.2015.0106

Abstract

A computational fluid dynamics(CFD) method based on moving-embedded grid technique is established to simulate the unsteady flow field of the coaxial rigid rotor in hover. In this solver, based on the highly-efficient moving-embedded grid technology, the simulation method is developed by solving the compressible Reynolds-averaged Navier-Stokes(RANS) equations with Baldwin-Lomax turbulence model and a dual-time method. Based upon the validation of the present CFD method, during the process of blade-vortex interaction in hover, close vortex-surface interactions and impingement phenomenon have been observed; at the same time, the interaction process among the vortexes shed from the upper blades and lower blades has been captured obviously, as a result, the evolution laws of position and strength of blade-tip vortex shed from different blades are obtained in detail. Furthermore, the periodic unsteady characteristics and variation trend of the aerodynamic forces of the upper rotor and lower rotor have been analyzed. The simulation results demonstrate that the upper blade vortices can impinge upon the lower blade, which causes the thrust loss of lower blade; the strength and positions of the vortexes shed from upper blades and lower blades could change due to the interaction; the forces on both the upper and lower rotors increase as the blades approach, then decrease and increase again as they move away.

参考文献

[1] LEISHMAN J G, SYAL M. Figure of merit definition for coaxial rotors[J]. Journal of the American Helicopter Society, 2008, 53(3):290-300.
[2] LEISHMAN J G, ANANTHAN S. An optimum coaxial rotor system for axial flight[J]. Journal of the American Helicopter Society, 2008, 53(4):366-381.
[3] LEISHMAN J G. Aerodynamic performance considerations in the design of a coaxial proprotor[J]. Journal of the American Helicopter Society, 2009, 54(1):12005-1-12005-14.
[4] LEISHMAN J G, ANANTHAN S. Aerodynamic optimization of a coaxial proprotor[C]//Proceedings of the 62th Annual Forum of the American Helicopter Society. Phoenix:American Helicopter Society, 2006:64-85.
[5] ANDREW M J. Coaxial rotor aerodynamics in hover[J]. Vertica, 1981, 5(2):163-172.
[6] BAGAI A, LEISHMAN J G. Free-wake analysis of tandem, tilt-rotor and coaxial rotor configurations[J]. Journal of the American Helicopter Society, 1996, 41(3):196-207.
[7] 黄水林, 徐国华, 李春华. 基于自由尾迹方法的共轴式双旋翼流场分析[J]. 南京航空航天大学学报, 2009, 40(6):721-726. HUANG S L, XU G H, LI C H. Flow field analysis of coaxial twin rotor based on free wake[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 40(6):721-726(in Chinese).
[8] KIM H W, BROWN R E. A rational approach to comparing the performance of coaxial and conventional rotors[J]. Journal of the American Helicopter Society, 2010, 55(1):12003-1-12003-9.
[9] KIM H W, BROWN R E. A comparison of coaxial and conventional rotor performance[J]. Journal of the American Helicopter Society, 2010, 55(1):12004-1-12004-20.
[10] 童自力, 孙茂. 共轴式双旋翼流动的N-S方程模拟[J]. 航空学报, 1998, 19(1):1-5. TONG Z L, SUN M. Navier-Stokes calculations of coaxial rotor aerodynamics[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(1):1-5(in Chinese).
[11] 童自力, 孙茂. 共轴式双旋翼气动力特性的计算研究[J]. 航空学报, 1999, 20(4):348-350. TONG Z L, SUN M. Navier-Stokes analysis of the aerodynamic properties of coaxial rotors[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(4):348-350(in Chinese).
[12] LAKSHMINARAYAN V K, BAEDER J D. High-resolution computational investigation of trimmed coaxial rotor aerodynamics in hover[J]. Journal of the American Helicopter Society, 2009, 54(4):42008-1-42008-21.
[13] LAKSHMINARAYAN V K, BAEDER J D. Computational investigation of micro-scale coaxial rotor aerodynamics in hover[J]. Journal of Aircraft, 2010, 47(3):940-955.
[14] LAKSHMINARAYAN V K, BAEDER J D. Computational investigation of small scale coaxial rotor aerodynamics in hover:AIAA-2009-1069[R]. Reston:AIAA, 2009.
[15] XU H Y, YE Z Y. Coaxial rotor helicopter in hover based on unstructured dynamic overset grids[J]. Journal of Aircraft, 2010, 47(5):1820-1824.
[16] XU H Y, YE Z Y. Numerical simulation of unsteady flow around forward flight helicopter with coaxial rotors[J]. Chinese Journal of Aeronautics, 2011, 24(1):1-7.
[17] 许和勇, 叶正寅. 悬停共轴双旋翼干扰流动数值模拟[J]. 航空动力学报, 2011, 26(2):453-457. XU H Y, YE Z Y. Numerical simulation of interaction unsteady flows around coaxial rotors in hover[J]. Journal of Aerospace Power, 2011, 26(2):453-457(in Chinese).
[18] 叶靓, 徐国华. 共轴式双旋翼悬停流场和气动力的 CFD计算[J]. 空气动力学学报, 2012, 30(4):437-442. YE L, XU G H. Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method[J]. Acta Aerodynamic Sinica, 2012, 30(4):437-442(in Chinese).
[19] COLEMAN C P. A survey of theoretical and experimental coaxial rotor aerodynamic research:NASA TP 3675[R]. Washington, D.C.:NASA, 1997.
[20] HARRINGTON R D. Full-scale-tunnel investigation of the static-thrust performance of a coaxial helicopter rotor:NACA TN-2318[R]. Washington, D.C.:NACA, 1951.
[21] 唐正飞, 高正. 共轴双旋翼与单旋翼悬停流场实验测量值的对比[J]. 南京航空航天大学学报, 1997, 29(6):627-632. TANG Z F, GAO Z. Comparison of experimental data for the coaxial-rotor and single-rotor flowfield in hovering[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1997, 29(6):627-632(in Chinese).
[22] 邓彦敏, 陶然, 胡继忠. 共轴式直升机上下旋翼之间气动干扰的风洞实验研究[J]. 航空学报, 2003, 24(1):10-14. DENG Y M, TAO R, HU J Z. Experimental investigation of the aerodynamic interaction between upper and lower rotors of a coaxial helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1):10-14(in Chinese).
[23] 王博, 招启军, 徐广. 基于新型运动嵌套网格方法的旋翼非定常前飞流场模拟[J]. 空气动力学学报, 2012, 30(1):14-21. WANG B, ZHAO Q J, XU G. Simulation for unsteady flowfield of forward rotor based upon a new moving-embedded grid method[J]. Acta Aerodynamic Sinica, 2012, 30(1):14-21(in Chinese).
[24] ZHAO Q J, XU G H, ZHAO J G. Numerical simulations of the unsteady flowfield of helicopter rotors on moving embedded grids[J]. Aerospace Science and Technology, 2005, 9(2):117-124.

文章导航

/