基于NFTET的高超声速飞行器再入容错制导
收稿日期: 2014-10-24
修回日期: 2015-04-01
网络出版日期: 2015-04-10
基金资助
国家自然科学基金 (61374116); 中央高校基本科研业务费专项资金; 南京航空航天大学研究生创新基地(实验室)开放基金 (kfjj201421)
Fault-tolerant guidance for reentry hypersonic flight vehicles based on NFTET
Received date: 2014-10-24
Revised date: 2015-04-01
Online published: 2015-04-10
Supported by
National Natural Science Foundation of China (61374116); The Fundamental Research Funds for the Central Universities; Foundation of Graduate Innovation Center in NUAA (kfjj201421)
针对以X-33为对象的三自由度高超声速飞行器,采用相邻可行轨迹存在定理(NFTET)设计了容错制导律以解决再入段执行器发生故障的轨迹重构问题。在标称情况下采用预测校正算法生成满足再入过程约束和终端约束要求的再入轨迹;当执行器发生故障时,飞行器气动参数、结构和舵面力矩都可能发生不可预测的变化,原先的轨迹不再满足制导要求,因此需要设计新型容错制导律。针对实际再入制导模型,基于NFTET设计容错制导算法对轨迹进行重构,得到满足故障情况下制导任务的可行轨迹。从仿真结果中可以看出,容错制导算法生成的新轨迹重新回到了约束范围之内,轨迹呈收敛趋势,使得高超声速飞行器从故障恢复到正常飞行状态,提高了飞行器的自主容错能力。
关键词: 高超声速飞行器; 预测校正制导; 容错制导; 重构轨迹; 相邻可行轨迹存在定理(NFTET)
钱佳淞 , 齐瑞云 . 基于NFTET的高超声速飞行器再入容错制导[J]. 航空学报, 2015 , 36(10) : 3370 -3381 . DOI: 10.7527/S1000-6893.2015.0092
A fault-tolerant guidance law using the neighboring feasible trajectory existence theorem (NFTET) for the three-degree-of-freedom model of a hypersonic vehicle X-33 is designed to solve the problem of trajectory reshaping under actuator failures in reentry phase. In the nominal case, the predictor-corrector guidance algorithm is used to generate the reentry trajectory which meets the requirements of reentry process constraints and terminal constraints. When the actuator failures occur, aerodynamic parameters, structure and the torque of surfaces of flight vehicles may change unpredictably, which makes the nominal trajectory not satisfy the guidance requirements of the reentry process. Therefore, it is necessary to design a new fault-tolerant guidance law. For the reentry guidance model, the fault-tolerant guidance algorithm is designed to reshape the trajectory based on NFTET. Then there is a new feasible trajectory which meets the requirements in the fault case. From the simulation results we can see that the reshaping trajectory generated from the fault-tolerant guidance algorithm is within the constraints of scope, shows a convergent trend and makes the hypersonic flight vehicles recover from failures, improving the autonomic fault-tolerant ability of the vehicles.
[1] Dukeman G A. Profile-following entry guidance using linear quadratic regulator theory[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2002.
[2] Shen Z, Lu P. Dynamics lateral entry guidance logic[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 949-959.
[3] Xue S, Lu P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1273-1281.
[4] Lu P. Predictor-corrector entry guidance for low-lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1067-1075.
[5] Leavitt J A, Saraf A, Chen D T, et al. Performance of evolved acceleration guidance logic for entry (EAGLE)[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2002.
[6] Saraf A, Leavitt J A, Chen D T, et al. Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft and Rockets, 2004, 41(6): 986-996.
[7] Schierman J D, Hull J R. In-flight entry trajectory optimization for reusable launch vehicles[C]//Proceedings of the 2005 AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2005: 1256-1262.
[8] Tian B, Zong Q. Optimal guidance for reentry vehicles based on indirect Legendre pseudospectral method[J]. Acta Astronautica, 2011, 68(7): 1176-1184.
[9] Yong E M, Tang G J, Chen L. Rapid trajectory optimization for hypersonic reentry vehicle via Gauss pseudospectral method[J]. Journal of Astronautics, 2008, 29(6): 1766-1772 (in Chinese). 雍恩米, 唐国金, 陈磊. 基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29(6): 1766-1772.
[10] Liu P, Zhao J S, Gu L X. Rapid approach for three-dimensional trajectory optimization of hypersonic reentry vehicles[J]. Flight Dynamics, 2012, 30(3): 263-267 (in Chinese). 刘鹏, 赵吉松, 谷良贤. 三维高超声速飞行器再入轨迹快速优化[J]. 飞行力学, 2012, 30(3): 263-267.
[11] Xie Y F, Tang S. On-line trajectory reshaping of suborbital return entry via pseudospectral method[J]. Flight Dynamics, 2011, 29(6): 63-67 (in Chinese). 解永锋, 唐硕. 基于伪谱法的亚轨道返回轨迹在线重构方法[J].飞行力学, 2011, 29(6): 63-67.
[12] Xu M L, Chen K J, Liu L H, et al. Quasi-equilibrium glide adaptive guidance for hypersonic vehicles[J]. Science China: Technology Science, 2012, 42(4): 378-387 (in Chinese). 徐明亮, 陈克俊, 刘鲁华, 等. 高超声速飞行器准平衡滑翔自适应制导方法[J]. 中国科学: 技术科学, 2012, 42(4): 378-387.
[13] Xu B, Shi Z K. An overview on flight dynamics and control approaches for hypersonic vehicles[J]. Science China Information Sciences, 2015, 58(7): 1-19.
[14] Xu B, Huang X, Wang D, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J]. Asian Journal of Control, 2014, 16(1): 162-174.
[15] Xu B, Wang S, Gao D, et al. Command filter based robust nonlinear control of hypersonic aircraft with magnitude constraints on states and actuators[J]. Journal of Intelligent & Robotic Systems, 2014, 73(1-4): 233-247.
[16] Xu B, Shi Z, Yang C, et al. Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint[J]. Nonlinear Dynamics, 2013, 73(3): 1849-1861.
[17] Schierman J D, Ward D G, Monaco J F, et al. A reconfigurable guidance approach for reusable launch vehicles[M]. Defense Technical Information Center, 2001: 163-175.
[18] Schierman J D, Ward D G, Hull J R, et al. Integrated adaptive guidance and control for re-entry vehicles with flight test results[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 975-988.
[19] Fahroo F, Doman D. A direct method for approach and landing trajectory reshaping with failure effect estimation[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2004.
[20] Jiang Z, Ordóñez R. On-line robust trajectory generation on approach and landing for reusable launch vehicles[J]. Automatica, 2009, 45(7): 1668-1678.
[21] Jiang Z, Ordónez R. Trajectory generation on approach and landing for RLVs using motion primitives and neighboring optimal control[C]//Proceedings of the 2007 American Control Conference. Piscataway, NJ: IEEE Press, 2007: 1091-1096.
[22] Tian B, Fan W, Zong Q, et al. Nonlinear robust control for reusable launch vehicles in reentry phase based on time-varying high order sliding mode[J]. Journal of the Franklin Institute, 2013, 350(7): 1787-1807.
[23] Dong C. Research on re-entry guidance method for reusable launch vehicles[D]. Harbin: Harbin Institute of Technology, 2010 (in Chinese). 董晨. 可重复使用飞行器再入制导方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
/
〈 | 〉 |