材料工程与机械制造

基于有限元方法的航天服平褶式关节建模

  • 尚坤 ,
  • 刘向阳 ,
  • 李猛
展开
  • 中国航天员科研训练中心 人因工程重点实验室, 北京 100094
尚坤 男, 硕士研究生。主要研究方向: 航天服工程。Tel: 010-66362326 E-mail: sk3882008@126.com

收稿日期: 2014-04-15

  修回日期: 2014-06-23

  网络出版日期: 2015-03-31

Modeling of spacesuit flat pattern mobility joint based on finite element method

  • SHANG Kun ,
  • LIU Xiangyang ,
  • LI Meng
Expand
  • National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China

Received date: 2014-04-15

  Revised date: 2014-06-23

  Online published: 2015-03-31

摘要

关节的灵活性能是航天服改进设计的一个重要方向,平褶式关节是一类典型的航天服软关节。为全面了解平褶式关节的活动特性,利用有限元方法构建了平褶式关节的仿真模型,该模型能够反映关节的主要材料和结构特征,计算得到了关节的阻力矩-角度关系。为验证模型,开展了关节原理样件的阻力矩测量,分析了模型误差的来源。比较了有限元方法和经典分析方法,并进一步讨论了平褶式关节阻力矩的组成。结果表明,有限元模型能够反映关节弯曲运动的基本特征,尽管关节运动初期和伸展运动后期阻力矩计算的准确性还有待提高,但与经典分析方法相比具有显著的优势。此外,结合模型结果分析得到平褶式关节阻力矩由压缩气体、材料摩擦以及结构的弹性变形引起。

本文引用格式

尚坤 , 刘向阳 , 李猛 . 基于有限元方法的航天服平褶式关节建模[J]. 航空学报, 2015 , 36(3) : 1002 -1010 . DOI: 10.7527/S1000-6893.2014.0128

Abstract

Flexibility of mobility joint is one of the important directions to improve the spacesuit design, and flat pattern mobility joint is a kind of typical soft joint of spacesuit. In order to make a comprehensive understanding of the mobility property of flat pattern mobility joint, a simulation model of flat pattern mobility joint, which reflects its main features of material and structure, is built based on the finite element method. And the relationship between torque and angle is obtained by calculation. To verify the model, torque of joint prototype is measured and error sources of model are analyzed. The finite element method and classical analytical methods are compared and the composition of torque is also discussed. Results show that the finite element model can describe essential characteristics of joint movement. Although the accuracies of joint torque during the initial state of joint bending and the latter period of joint extending need to be improved, it shows more advantages than the classical analytical methods. In addition, it can be concluded from the result analysis that torque of flat pattern mobility joint is induced by compressing gas, friction of materials and elastic deformation of structure.

参考文献

[1] Zhao J D, Jin M H, Gao Z Q, et al. Passive robot based measuring method for intravehicular and extravehicular mobility unit spacesuit arm[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1370-1380 (in Chinese). 赵京东, 金明河, 高志强, 等. 基于随动机器人的舱内外航天服手臂测试方法[J]. 航空学报, 2008, 29(5): 1370-1380.



[2] Vykukal H C, Altos L, Webbon B W, et al. Pressure suit joint analyzer: USA, 4311055[P]. 1980-06-11.



[3] Matty J. Results and analysis from space suit joint torque testing, AIAA-2010-6211[R]. Reston: AIAA, 2010.



[4] Meyen F, Holschuh B, Kobrick R, et al. Robotic joint torque testing: a critical tool in the development of pressure suit mobility elements, AIAA-2011-5105[R]. Reston: AIAA, 2011.



[5] Thomas K S, McMann H J. US spacesuits[M]. 2nd ed. Chichester: Praxis Publishing, 2012: 72.



[6] Abramov I, Abramov I P, Skoog I. Russian spacesuits [M]. Chichester: Praxis Publishing, 2003: 181-204.



[7] Menendez V, Diener M, Baez J M. Performance of EVA suit soft flat pattern mobility joints, SAE-941331[R]. Friedrichshafen: SAE, 1994.



[8] Main J A, Peterson S W, Strauss A M. Design and structural analysis of highly mobile space suits and gloves[J]. Journal of Spacecraft and Rockets, 1994, 31(6): 1115-1122.



[9] Stein M, Hedgepeth J M. Analysis of partly wrinkled membranes, NASA TN D-813 [R]. Washington, D.C.: NASA, 1961.



[10] Wang C G, Du X W, He X D. Wrinkling analysis of space inflatable membrane structures[J]. Chinese Journal of Theoretical Mechanics, 2008, 40(3): 331-338 (in Chinese). 王长国, 杜星文, 赫晓东. 空间充气薄膜结构的褶皱分析[J]. 力学学报, 2008, 40(3): 331-338.



[11] Fay J P, Steele C R. Bending and symmetric pinching of pressurized tubes[J]. International Journal of Solids and Structures, 2000, 37(46-47): 6917-6931.



[12] Schmidt P B. An investigation of space suit mobility with applications to EVA operations[D]. Massachusetts: Massachusetts Institute of Technology, 2001.



[13] Li G L, Li D K, Zhou S M, et al. Damping moment analysis of bellows-type space suit joint base on energy method[J]. Engineering Mechanics, 2010, 27(10): 235-240 (in Chinese). 李广利, 李道奎, 周仕明, 等. 基于能量法的波纹管式航天服关节阻力矩分析[J]. 工程力学, 2010, 27(10): 235-240.



[14] Furuya H, Yokoyama J. Wrinkle and collapsing process of inflatable tubes under bending loads by finite element analysis, AIAA-2012-1917[R]. Reston: AIAA, 2012.



[15] Furuya H, Yokoyama J. Bending properties of bellows-type inflatable tube elements, AIAA-2013-1865[R]. Reston: AIAA, 2013.



[16] Cavallaro P V, Sadegh A M, Quigley C J. Contributions of strain energy and PV-work on the bending behavior of uncoated plain-woven fabric air beam[J]. Journal of Engineered Fibers and Fabrics, 2007, 2(1): 16-29.



[17] Gary L H. The origins and technology of the advanced extravehicular space suit[M]. California: American Astronautical Society, 2001: 5-45.



[18] China National Textiles Supervision Testing Center. FZ/T 01114—2012 Test method of fabric shear property at low levels of deformation[S]. Beijing: Standards Press of China, 2012: 1-4 (in Chinese). 国家纺织制品质量监督检验中心. FZ/T 01114—2012 织物低应力拉伸性能的试验方法[S]. 北京:中国标准出版社, 2012: 1-4.



[19] Lin G C, Wan Z M, Du X W. Research on the shear behavior for woven fabrics[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 1005-1008 (in Chinese). 林国昌, 万志敏, 杜星文. 机织织物剪切行为研究[J]. 航空学报, 2007, 28(4): 1005-1008.



[20] Belytschko T, Liu W K, Moran B. Nonlinear finite elements for continua and structures[M]. Zhuang Z, translated. Beijing: Tsinghua University Press, 2002: 124-140 (in Chinese). Belytschko T, Liu W K, Moran B. 连续体和结构的非线性有限元[M]. 庄茁, 译. 北京: 清华大学出版社, 2002: 124-140.

文章导航

/