材料工程与机械制造

钛合金放电诱导可控燃爆烧蚀高效车削

  • 刘志东 ,
  • 尹纯晶 ,
  • 邱明波 ,
  • 田宗军
展开
  • 南京航空航天大学 机电学院, 南京 210016
刘志东 男, 博士, 教授, 博士生导师。主要研究方向: 特种加工,半导体放电加工,高效加工。Tel: 025-84892520 E-mail: liutim@nuaa.edu.cn

收稿日期: 2014-04-03

  修回日期: 2014-06-30

  网络出版日期: 2015-03-31

基金资助

国家自然科学基金 (51175256, 51205197); 江苏省自然科学基金 (BK2011732); 航空科学基金 (2011ZE52060); 江苏省普通高校研究生科研创新计划 (CXLX12_0138)

Titanium alloy controllable melting and explosion efficient turning induced by EDM

  • LIU Zhidong ,
  • YIN Chunjing ,
  • QIU Mingbo ,
  • TIAN Zongjun
Expand
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2014-04-03

  Revised date: 2014-06-30

  Online published: 2015-03-31

Supported by

National Natural Science Foundation of China (51175256, 51205197); Natural Science Foundation of Jiangsu Province (BK2011732); Aeronautical Science Foundation of China (2011ZE52060); Jiangsu Innovation Program for Graduate Education (CXLX12_0138)

摘要

钛合金在放电诱导和助燃氧气的共同作用下能通过自身燃烧反应被蚀除,随着助燃氧气压力增大,钛合金蚀除速度增大,但是当气体压力增大到一定程度时会发生爆炸,影响材料成形精度。针对钛合金放电诱导烧蚀高效车削加工提出了基于可控燃爆机理的新加工理念,即通过定量高压复合低压进气系统以实现钛合金在加工过程中处于可控燃爆状态,以增加钛合金蚀除速度。并与只通入低压氧气的加工方式进行对比试验。结果表明:基于可控燃爆机理的车削加工,在保证加工精度的前提下,通过间歇定量高压助燃氧气实现钛合金燃爆的可控高效加工,其蚀除速度远远高于只通入低压氧气的放电诱导烧蚀车削。

本文引用格式

刘志东 , 尹纯晶 , 邱明波 , 田宗军 . 钛合金放电诱导可控燃爆烧蚀高效车削[J]. 航空学报, 2015 , 36(3) : 995 -1001 . DOI: 10.7527/S1000-6893.2014.0132

Abstract

Titanium alloy can be removed through its own combustion reaction under the conditions of electrical discharging and combustion-supporting oxygen. With the combustion-supporting oxygen pressure increasing, the erosion rate of the titanium alloy increases. But it will explode when the oxygen pressure increases to a certain extent. The material forming accuracy will reduce. A new processing concept is proposed based on the controllable melting and explosion mechanism for the efficient turning induced by electrical discharge machining (EDM). The concept can keep titanium alloy processing in the controllable melting and explosion condition to increase its corrosion removing rate through the induction system of quantitative high-pressure composite low-pressure, which is compared with the machining method that only passes into the low-pressure oxygen. The results show that the corrosion removing rate of controllable efficient processing of titanium explosion with intermittent quantitative high-pressure combustion oxygen, which is based on turning composite machining with controllable melting and explosion mechanism, is much higher than that of only spark-induced combustion turning machining with low-pressure oxygen.

参考文献

[1] Liu Y, Qu Z D, Wang B X. Research development and application of Ti6Al4V alloy[J]. Weapon Materials and Science Engineering, 2005, 28(5): 47-50 (in Chinese). 刘莹, 曲周德, 王本贤. 钛合金TC4的研究开发与利用[J]. 兵器材料科学与工程, 2005, 28(5): 47-50.







[2] Ezugwu E O, Bonney J, Yamane. An overview on the use of titanium in the aerospace[J]. Journal of Materials Processing Technology, 2003, 134: 233-253.







[3] Donachie M J. Titanium: a technical guide[M]. New York: The Materials Information Society, 2000: 66-96.







[4] Zhu X W. Study on cutting of titanium alloy TC11[D]. Shenyang: Shenyang Aerospace University, 2010 (in Chinese). 朱晓伟. 钛合金TC11切削加工研究[D]. 沈阳: 沈阳航空航天大学, 2010.







[5] Wang H Y. Research on turning for TC4 titanium alloy[J]. Special Steel Technology, 2012(4): 47-49 (in Chinese). 王鹤仪. TC4钛合金车削加工的研究[J]. 特钢技术, 2012(4): 47-49.







[6] Zhao W S. Electrical discharge machining technology[M]. Harbin: Harbin Institute of Technology Press, 2000: 52-53 (in Chinese). 赵万生. 电火花加工技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2000: 52-53.







[7] Zhao W S. Advanced electric diacharge machining technology[M]. Beijing: National Defence Industry Press, 2005: 20-21 (in Chinese). 赵万生. 先进电火花加工技术[M]. 北京: 国防工业出版社, 2005: 20-21.







[8] Chen L H, Liu Z D, Qiu M B, et al. Study of TC4 titanium alloy controllable combustion induced by EDM and turning dressing combined machining[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2626-2632 (in Chinese). 陈龙海, 刘志东, 邱明波, 等. TC4钛合金电火花诱导可控烧蚀复合车削技术研究[J]. 航空学报, 2013, 34(11): 2626-2632.







[9] Liu Z D. Series typical efficient machining methods of controllable burning by discharge-induced[J]. Electromachining and Mould, 2012(1): 1-5 (in Chinese). 刘志东. 放电诱导可控烧蚀高效加工典型工艺方法[J]. 电加工与模具, 2012(1): 1-5.







[10] Zhao Y Q, Zhou L, Deng J. Effect of alloying element, Cr, on the burning behavior of titanium alloys[J]. Rare Metal Materials and Engineering, 1999, 28(3): 132-135 (in Chinese). 赵永庆, 周廉, 邓炬. 合金元素Cr对钛合金燃烧行为的影响[J]. 稀有金属材料与工程, 1999, 28(3): 132-135.







[11] Zhao Y Q, Zhou L, Deng J. Study on the burning behavior of Ti-Cr binary alloys and their burning products[J]. Journal of Aeronautica Materials, 2001, 21(1): 6-9 (in Chinese). 赵永庆, 周廉, 邓炬. Ti-Cr合金的燃烧行为及燃烧产物分析[J]. 航空材料学报, 2001, 21(1): 6-9.







[12] Huang X, Cao C X, Ma J M, et al. Titanium combustion in aeroengines and fire-resistant titanium alloys[J]. Materials Engineering, 1997(8): 11-15 (in Chinese). 黄旭, 曹春晓, 马济民, 等. 航空发动机钛燃烧及阻燃钛合金[J]. 材料工程, 1997(8): 11-15.







[13] Charles W E. AFWAL-TR-84-4079 The combustion of titanium in gas turbine engines[S]. Air Force Wright Aeronautical Laboratories, 1984.







[14] Monoroe R W, Bates C D, Pears C D. STP35211S Metal combustion in high-pressure flowing oxygen[S]. Phiadelphia: ASTM, 1983.







[15] Shi L F, Huang J F, Zhao G P, et al. Research on combustion characteristics and properties of superalloy in high-pressure and oxygen-enriched atmosphere[J]. Material & Heat Treatment, 2007, 36(4): 26-29 (in Chinese). 施立发, 黄进峰, 赵光普, 等. 高压富氧下几种高温合金的燃烧特征和性能研究[J]. 材料热处理, 2007, 36(4): 26-29.

文章导航

/