电子与控制

先验失配条件下的知识辅助检测器稳健性分析

  • 邹鲲 ,
  • 张斌 ,
  • 刘自富
展开
  • 1. 空军工程大学 信息与导航学院, 西安 710077;
    2. 星海通信科技有限公司, 福州 350008
张斌 男,博士,教授。主要研究方向:自适应信号处理。Tel: 029-84791512 E-mail: zhangbin5037@163.com

收稿日期: 2014-04-14

  修回日期: 2014-07-22

  网络出版日期: 2015-03-31

基金资助

国家自然科学基金 (61271292);航空创新基金

Robustness analysis of knowledge aided detector under prior mismatched conditions

  • ZOU Kun ,
  • ZHANG Bin ,
  • LIU Zifu
Expand
  • 1. School of Information and Navigation, Air Force Engineering University, Xi'an 710077, China;
    2. Xinghai Communication Science Technology Co., Ltd., Fuzhou 350008, China

Received date: 2014-04-14

  Revised date: 2014-07-22

  Online published: 2015-03-31

Supported by

National Natural Science Foundation of China (61271292); Aeronautical Innovation Foundation

摘要

充分利用探测环境的先验信息是提高雷达探测能力的有效途径之一。先验信息必须在雷达检测算法设计阶段确定下来,因此先验信息与当前探测环境之间可能存在不一致性。以复合高斯杂波中的、利用纹理分量先验信息的知识辅助(KA)检测器作为研究对象,首先建立了该检测器检测性能与先验分布参数失配之间的量化关系,然后根据给定的杂波探测环境模型参数,分析了先验模型失配对检测性能的影响。分析结果表明:知识辅助检测器的稳健性与当前探测环境模型参数有关。进一步给出了先验模型失配的容许区间,当先验模型参数在这个区间内,知识辅助检测器性能优于不使用先验信息的检测器性能。

本文引用格式

邹鲲 , 张斌 , 刘自富 . 先验失配条件下的知识辅助检测器稳健性分析[J]. 航空学报, 2015 , 36(3) : 939 -948 . DOI: 10.7527/S1000-6893.2014.0169

Abstract

Smart use of the prior information of detection environment is one of effective approaches to improve the performance of radar detection. Prior information is given at the design stage of radar detector, and the resultant difference between the prior model and current detection environment may be existed. In this paper, the knowledge aided (KA) detector using the texture component prior information in compound Gaussian clutter is considered. The quantized relationship between the detector performance and the mismatched prior model parameters is proposed, and the impact of the mismatched prior model on the detector performance is analyzed, with given detection environment model. The analyzed results show that, the robustness of knowledge aided detector is related to the model parameters of current detection environment. Furthermore, we propose the allowable region of the prior model mismatches, and when the prior model parameters are located in this region, the knowledge aided detector outperforms the convention detector without using prior information.

参考文献

[1] Berger J O. Statistical decision theory and Bayesian analysis[M]. 2nd ed. New York: Springer-Varlag, 1985: 1-50.



[2] Moya J C, Maio A D. Experimental performance analysis of distributed targets coherent radar detector [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2216-2238.



[3] Sangston K J, Gini F, Greco M S. Coherent radar target detection in heavy-tailed compound Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64-77.



[4] Carretero-Moya J, Menoyo J G, Lopze A A. Small target detection in high resolution heterogeneous sea clutter: an empirical analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1880-1888.



[5] Ollila E, Tyler D E, Koivunen V, et al. Compound Gaussian clutter modeling with an inverse Gaussian texture distribution[J]. IEEE Signal Processing Letters, 2012, 19(12): 876-879.



[6] Gao Y, Liao G S, Zhu S, et al. A persymmetric GLRT for adaptive detection in compound Gaussian clutters with random texture[J]. IEEE Signal Processing Letters, 2013, 20(6): 615-618.



[7] Abdelaziz M E M, Chonavel T, Aissa-El-Bey A, et al. Sea clutter texture estimation: exploiting decorrelation and cyclostationarity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 726-742.



[8] Gini F, Rangaswamy M. Knowledge-based radar detection, tracking, and classification [M]. New York: John Wiley & Sons, 2008: 14-55.



[9] Gini F, Greco M V, Farina A, et al. Optimum and mismatched detection against K-distribution plus Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 860-876.



[10] Greco M, Stinco P, Gini F. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1502-1513.



[11] Bandiera F, Orlando D, Ricci G. Advanced radar detection schemes under mismatched signal model[M]. New York: Morgan & Claypool Publishers, 2009: 1-55.



[12] Tang B, Tang J, Peng Y N. Performance of knowledge aided space time adaptive processing[J]. IET Radar, Sonar & Navigation, 2011, 5(3): 331-340.



[13] Tang B, Zhang Y, Li K. Adaptive clutter suppression research based on priori knowledge and its accuracy evaluation[J]. Acta Aeronoutica et Astronautica Sinica, 2013, 34(5): 1174-1180 (in Chinese). 唐波, 张玉, 李科. 基于先验知识及其定量评估的自适应杂波抑制研究[J].航空学报, 2013, 34(5): 1174-1180.



[14] Balleri A, Nehorai A, Wang J. Maximum likelihood estimation for compound-Gaussian clutter with inverse gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 775-779.



[15] Shang X, Song H. Radar detection based on compound Gaussian model with inverse gamma texture[J]. IET Radar, Sonar & Navigation, 2011, 5(3): 315-321.



[16] Bandiera F, Besson O, Ricci G. Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: a Bayesian approach[J]. IEEE Transactions on Signal Processing, 2011, 59(12): 5698-5708.



[17] Bandiera F, Besson O, Ricci G, Knowledge-aided covariance matrix estimation and adaptive detection in compound Gaussian noise [J]. IEEE Transactions on Signal Processing, 2011, 58(10): 5390-5396.



[18] Zhao Y N, Li F C, Yin B. Adaptive polarimetric detection of targets in heavy-tailed compound-Gaussian clutter[J]. Journal of Electronics & Information Technology, 2013, 35(2): 376-380(in Chinese). 赵宜楠, 李风从, 尹彬. 严重拖尾复合高斯杂波中目标的自适应极化检测[J].电子与信息学报,2013, 35(2):376-380.



[19] Zou K, Liao G S, Li J, et al. Robust detection in compound Gaussian clutter based on Bayesian framework[J]. Journal of Electronics & Information Technology, 2013, 35(7): 1551-1560 (in Chinese). 邹鲲, 廖桂生, 李军, 等.基于Bayesian框架的复合高斯杂波下稳健检测[J].电子与信息学报,2013, 35(7):1551-1560.



[20] Zou K, Liao G S, Li J, et al. Sensitivity analysis of knowledge aided detector in non-Gaussian clutter[J]. Journal of Electronics & Information Technology, 2014, 36(1): 181-186 (in Chinese). 邹鲲, 廖桂生, 李军, 等. 非高斯杂波下知识辅助检测器敏感性分析[J]. 电子与信息学报, 2014, 36(1): 181-186.



[21] Zou K, Liao G S, Li J, et al. Cognitive method for know-ledge aided detection in non-Gaussian clutter[J]. Acta Electronica Sinica, 2014, 42(6): 1047-1054 (in Chinese). 邹鲲, 廖桂生, 李军, 等,非高斯杂波下的知识辅助检测的认知方法[J]. 电子学报, 2014, 42(6): 1047-1054.

文章导航

/