固体力学与飞行器总体设计

6156-T4铝合金焊接加筋薄壁结构剩余强度评估的CTOD方法

  • 赵延广 ,
  • 刘建中 ,
  • 郭翔 ,
  • 刘虎 ,
  • 尚德广
展开
  • 1. 中国航空工业集团公司 北京航空材料研究院, 北京 100095;
    2. 北京工业大学 机械工程与应用电子技术学院, 北京 100124
赵延广 男, 博士, 工程师。主要研究方向: 疲劳与断裂, 损伤容限性能测试与评价。Tel: 010-62496711 E-mail: ygzhao81@mail.dlut.edu.cn

收稿日期: 2014-02-28

  修回日期: 2014-04-24

  网络出版日期: 2015-03-31

基金资助

国家自然科学基金(11272019);国家自然科学基金重大国际合作项目(51010006)

Residual strength prediction of welded stiffened thin-walled structures made of Al 6156-T4 alloy based on CTOD method

  • HAO Yanguang ,
  • LIU Jianzhong ,
  • GUO Xiang ,
  • LIU Hu ,
  • SHANG Deguang
Expand
  • 1. Beijing Institute of Aeronautical Materials, Aviation Industry Corporation of China, Beijing 100095, China;
    2. College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China

Received date: 2014-02-28

  Revised date: 2014-04-24

  Online published: 2015-03-31

Supported by

National Natural Science Foundation of China (11272019); Major Program for International Cooperation of National Natural Science Foundation of China (51010006)

摘要

为保证飞机设计满足损伤容限性能要求,有必要对其进行剩余强度评估。针对6156-T4铝合金焊接连接薄壁结构进行了R曲线和剩余强度试验,判断了裂纹扩展经过筋条时的裂纹扩展路径,测量了母板和筋条两个方向的裂纹扩展速率,并采用不同的断裂准则和分析方法对单及双跨度多个初始裂纹长度焊接加筋薄板的剩余强度进行了预测。结果表明:裂纹扩展在经过筋条时,同时沿着母板和筋条继续扩展,筋条上的裂纹扩展方向垂直于母板且两个方向的裂纹扩展速率基本相同;采用净截面屈服准则进行剩余强度预测时会低估这种韧性较好的焊接连接薄壁结构的剩余强度;基于SINTAP-FITNET评价体系,以裂纹尖端张开位移(CTOD-δ5)作为裂纹尖端弹塑性表征参量进行剩余强度预测时,预测结果比采用K曲线预测方法精度高。

本文引用格式

赵延广 , 刘建中 , 郭翔 , 刘虎 , 尚德广 . 6156-T4铝合金焊接加筋薄壁结构剩余强度评估的CTOD方法[J]. 航空学报, 2015 , 36(3) : 827 -833 . DOI: 10.7527/S1000-6893.2014.0069

Abstract

In order to ensure that aircraft performance satisfies the damage tolerance design requirements, it is necessary to assess its residual strength. This paper deals with the R-curve and residual strength analysis of welded thin-walled structures for aircraft fuselage applications made of Al 6156-T4 alloy. The experimental results have been used to verify the proposed analysis route for the residual strength prediction. In addition, the crack propagation paths are detected when the crack through the stringer and the crack growth rates are measured in two directions. The residual strength is predicted for one-bay and two-bay thin-walled structure with variety initial crack length using different criteria. The results show that crack branching (into skin and stringer) when crack growing approached to the stringer in a perpendicular form. It is found that the residual strength is underestimated using the net section yield criteria for the residual strength prediction. In particular, the prediction based on SINTAP-FITNET evaluation system using parameters CTOD-δ5 is more accurate than using K curve method.

参考文献

[1] Hjelen J, Ørsund R, Nes E. On the origin of recrystallization textures in aluminium[J]. Acta Metallurgica et Materialia, 1991, 39(7): 1377-1404.



[2] Zhang J M, Nie H, Xue C J, et al. Properties and prediction of pre-corrosion strength of aluminum alloy welded joints[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2161-2168 (in Chinese). 张俊苗, 聂宏, 薛彩军, 等. 铝合金焊接接头预腐蚀强度特性及预测[J]. 航空学报, 2013, 34(9): 2161-2168.



[3] Wu X R. Handbook of mechanical properties of aircraft structural metals: static strength fatigue/durability[M]. Beijing: Aviation Industry Press, 1996: 25-42 (in Chinese). 吴学仁. 飞机结构金属材料力学性能手册:静强度疲劳/耐久性[M]. 北京: 航空工业出版社, 1996: 25-42.



[4] Broek D. Elementary engineering fracture mechanics [M]. Hague: Kluwer Academic Publishers, 1974: 71-97.



[5] Vlieger H. The residual strength characteristics of stiffened panels containing fatigue cracks[J]. Engineering Fracture Mechanics, 1973, 5(2): 447-477.



[6] Feddersen C. Evaluation and prediction of the residual strength of center cracked tension panels[J]. Damage Tolerance in Aircraft Structures, 1971, 486(71): 50-78.



[7] Krafft J, Sullivan A, Boyle R. Effect of dimensions on fast fracture instability of notched sheets[C]//Proceedings of the Crack Propagation Symposium, 1961: 8-26.



[8] Zerbst U, Schǒdel M, Webster S, et al. Fitness-for-service fracture assessment of structures containing cracks[M]. Amsterdam: Elsevier; 2007: 137-151.



[9] Schwalbe K H. Introduction of δ5 as an operational definition of the CTOD and its practical use[S]. West Conshohocken: American Society for Testing and Materials, 1995.



[10] Zerbst U, Heinimann M, Donne C D, et al. Feacture and damage mechanics modelling of thin-walled structures—an overview [J]. Engineering Fracture Mechanics, 2009, 76(1): 5-43.



[11] Kocak M. FITNET fitness-for-service procedure: an overview [J]. Welding in the World, 2007, 51(5-6):94-105.



[12] Zhang Y H, Lyu G Z, Li Z, et al. Investigation on corrosion fatigue crack growth and residual strength of aluminum alloy structure[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 332-335 (in Chinese). 张有宏, 吕国志, 李仲, 等. 铝合金结构腐蚀疲劳裂纹扩展与剩余强度研究[J]. 航空学报, 2007 , 28(2): 332-335.



[13] Schwalbe K H, Newman J C Jr, Shannon J L Jr. Fracture mechanics testing on specimens with low constraint—standardization activities within ISO and ASTM[J]. Engineering Fracture Mechanics, 2005, 72(4): 557-576.



[14] China Iron and Steel Association. GB/T 24522—2009 Metallic materials-Method of test for the determination of resistance to stable crack extension using specimens of low constraint[S]. Beijing: Standards Press of China, 2009 (in Chinese). 中国钢铁工业协会. GB/T 24522—2009 金属材料 低拘束试样测定稳定裂纹扩展阻力的试验方法[S]. 北京: 中国标准出版社, 2009.



[15] Seib E, Uz M V, Kocak M. Fracture analysis of thin walled laser beam and friction stir welded Al-alloys using FITNET procedure[C]//International Conference of Fitness-for-Service, 2006: 229-239.



[16] Jones R, Krishnapillai M, Cairns K, et al. Application of infrared thermography to study crack growth and fatigue life extension procedures[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(12): 871-884.

文章导航

/