流体力学与飞行力学

吸气式高超声速飞行器内外流同时测力试验

  • 王泽江 ,
  • 孙鹏 ,
  • 李绪国 ,
  • 唐小伟
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国空气动力研究与发展中心 超高速空气动力研究所, 绵阳 621000
孙鹏 男,硕士,工程师。主要研究方向:高超声速气动力试验技术。Tel: 0816-2465034 E-mail: seafly1020@163.com;李绪国 男,硕士,高级工程师。主要研究方向:高超声速气动力试验技术。Tel: 0816-2465034 E-mail: l_x_g_123@126.com;唐小伟 男,硕士,研究员。主要研究方向:高超声速CFD计算与模拟技术。Tel: 0816-2465034 E-mail: t_xw@sohu.com

收稿日期: 2014-04-25

  修回日期: 2014-06-15

  网络出版日期: 2015-03-31

基金资助

国家科技工程基础研究(2009-Ⅲ-3.4.2-01)

Force test on internal and external flow simultaneous measurement of air-breathing hypersonic vehicle

  • WANG Zejiang ,
  • SUN Peng ,
  • LI Xuguo ,
  • TANG Xiaowei
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. .Hypervelocity Aerodynamics Institute of China Aerodynamic Research and Development Center, Mianyang 621000, China

Received date: 2014-04-25

  Revised date: 2014-06-15

  Online published: 2015-03-31

Supported by

Basic Research of China National Science and Technology Project (2009-Ⅲ-3.4.2-01)

摘要

为研究吸气式高超声速飞行器新型测力试验技术的可行性,在马赫数Ma=6、高度H=27 km模拟飞行环境下开展了风洞试验。以轴对称吸气式高超声速飞行器无舵翼简化构型为研究对象,通过合理的试验系统设计解决内外流解耦关键技术,采用两个环式六分量天平在同一车次上测量模型内外流气动力载荷。试验结果表明:内外流气动力天平测量数据和全模气动力数据准确反映了内外流解耦、内外流窜流、进气道起动/不起动以及溢流影响等物理现象;从物理上实现了内外流解耦;内流气动力对全机气动性能贡献大;内外流解耦、进气道起动时,气动力数据准确、重复性好;窜流产生的传力属于内力。试验证明,同时测力试验技术可行,为解决内外流气动数据源于不同试验所致的不确定性问题提供了有效手段。

本文引用格式

王泽江 , 孙鹏 , 李绪国 , 唐小伟 . 吸气式高超声速飞行器内外流同时测力试验[J]. 航空学报, 2015 , 36(3) : 797 -803 . DOI: 10.7527/S1000-6893.2014.0123

Abstract

In order to investigate the new force test technique feasibility of the air-breathing hypersonic vehicle, a wind tunnel test is conducted at the simulated flight environment of Mach number Ma=6.0 and altitude H=27 km. The research subject is a simplified configuration without wings and fins of an axisymmetric air-breathing hypersonic vehicle. The internal and external flow decoupling crucial technology is settled by the rational test system design. The internal and external flow aerodynamic loads of the model in the same run are measured by a double ring type six-component balances. The test results show that the internal and external flow aerodynamic measurements and the total aerodynamic datum exactly reflect abundant physical phenomena, including decoupling and cross-flow between the internal and external flow, the inlet starting/un-starting, and the spillage influence. The internal and external flow decoupling is realized in physics. The internal aerodynamic forces make a great contribution to the hypersonic vehicle aerodynamic performance. Under the conditions of the internal and external flow decoupling, the aerodynamic data have high accuracy and good repeatability when the inlet starts. The forces from cross-flow are the internal forces. The results of the test indicate that it is feasible for this new force test technique to provide a valid method to solve the problem of internal and external flow aerodynamic data uncertainty from different tests.

参考文献

[1] Holland S D, Woods W C, Engelund W C. Hyper-X research vehicle experimental aerodynamics test program overview[J]. Journal of Spacecraft and Rockets, 2001, 38(6): 11-12







[2] Holden M S, Smolinski G J, Mundy E, et al. Experimental studies for hypersonic vehicle design and code validation of the unsteady flow characteristics associated with "free flight" shroud and stage separation, and mode switching, AIAA-2008-0642[R]. Reston: AIAA, 2008.







[3] Bai H C, Wang Z J. Discussion on force-accounting system for airbreathing hypersonic vehicle[J]. Journal of Propulsion Technology, 2012, 33(1): 1-6 (in Chinese). 白菡尘, 王泽江. 高超声速冲压发动机-飞行器计力体系讨论[J]. 推进技术, 2012, 33(1): 1-6.







[4] Voland R T. Methods for determining the internal thrust of Scramjet engine modules from experimental data, AIAA-1990-2340[R]. Reston: AIAA, 1990.







[5] Mitani T, Kobayashi K, Hiraiwa T, et al. Evaluation of internal aerodynamic performance in scramjet engines, AIAA-2001-1885[R]. Reston: AIAA, 2001.







[6] Tan H J, Guo R W. Design and wind tunnel study of a top-mounted diverterless inlet[J]. Chinese Journal of Aeronautics, 2004, 17(2): 72-78.







[7] Holden M S, Wadhams T P, MacLean M. Experimental studies in the LENS supersonic and hypersonic tunnels for hypervelocity vehicle performance and code validation, AIAA-2008-2505[R]. Reston: AIAA, 2008.







[8] Xu X B, Shu H F, Xie F, et al. Technique investigation on flow through model inner flow drag straightway measured by strain-gauge balance[J]. Journal of Propulsion Technology, 2013, 34(3): 311-315 (in Chinese). 许晓斌, 舒海峰, 谢飞, 等. 通气模型内流道阻力直接测量技术[J]. 推进技术, 2013, 34(3): 311-315.







[9] Bahm C, Baumann E, Martin J, et al. The X-43A hyper-X Mach 7 flight 2 guidance, navigation, and control overview and flight test results, AIAA-2005-3275[R]. Reston: AIAA, 2005.







[10] Nishizawa U, Kameda M. Computational simulation of shock oscillation around a supersonic air-inlet, AIAA-2006-3042[R]. Reston: AIAA, 2006.







[11] Timofeevg V, Tahir R B, Molder S. On recent development related to flow staring in hypersonic air intakes, AIAA-2008-2512[R]. Reston: AIAA, 2008.







[12] Sun S, Zhang H Y, Cheng K M, et al. The full flowpath analysis of a hypersonic vehicle[J]. Journal of Astronautics, 2007, 20(5): 385-393.







[13] Wang W X, Guo R W. Numerical study of unsteady starting characteristics of a hypersonic inlet[J]. Chinese Journal of Aeronautics, 2013, 26(3): 563-571.







[14] Cheng H M. Interference and correction on wind tunnel testing[M]. Beijing: National Defense Industry Press, 2003: 227-265 (in Chinese). 程厚梅. 风洞试验干扰与修正[M]. 北京:国防工业出版社, 2003: 227-265.







[15] Tang Z G. Hypersonic aerodynamic testing[M]. Beijing: National Defense Industry Press, 2004: 74-80 (in Chinese). 唐志共. 高超声速气动力试验[M]. 北京: 国防工业出版社, 2004: 74-80.

文章导航

/