流体力学与飞行力学

高超声速气动力试验模拟参数选取准则

  • 王刚 ,
  • 杨彦广 ,
  • 唐志共
展开
  • 中国空气动力研究与发展中心 超高速空气动力研究所, 绵阳 621000
王刚 男, 助理研究员。主要研究方向: 高超声速气动力实验与理论研究。Tel: 0816-2465295 E-mail: wanggangustc@mail.ustc.edu.cn;唐志共 男, 博士, 研究员, 博士生导师。主要研究方向: 飞行器设计。Tel: 0816-2466011 E-mail: tangzhigong@sina.com

收稿日期: 2014-04-10

  修回日期: 2014-08-14

  网络出版日期: 2015-03-31

Criterion of selective simulation parameters for hypersonic aerodynamic test

  • WANG Gang ,
  • YANG Yanguang ,
  • TANG Zhigong
Expand
  • Hypervelocity Aerodynamic Institute of China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2014-04-10

  Revised date: 2014-08-14

  Online published: 2015-03-31

摘要

高超声速气动力试验模拟准则的有效性问题阻碍了飞行器气动性能预测能力的发展。鉴于此,将尺度化方法应用于实验空气动力学领域,基于连续流域高超声速流动的双尺度特点,对各参数选取适当的尺度将流动控制方程尺度化。针对典型飞行状态,通过计算尺度化方程中各系数的量级,获取高超声速气动力试验模拟参数的选择准则。研究表明:建立的模拟参数选取方法为现有的高超声速气动力试验模拟准则提供了理论支持,模拟参数的选取准则随飞行条件发生显著改变。应用理论分析方法验证了黏性干扰参数是高马赫数高超声速气动力试验中的重要模拟参数,并与国外关于黏性干扰效应关联区域的结论进行了相互验证。

本文引用格式

王刚 , 杨彦广 , 唐志共 . 高超声速气动力试验模拟参数选取准则[J]. 航空学报, 2015 , 36(3) : 789 -796 . DOI: 10.7527/S1000-6893.2014.0186

Abstract

Validity issue on simulation criterion for hypersonic aerodynamic test has hindered the development of ability on aerodynamic performance prediction for hypersonic aircraft. Scaling method is applied in the field of experimental aerodynamics within continuous flow regime. Various parametric scales are selected due to dual scale of flow characteristics and different parameters are applied to scaling the equation. Based on the assessment of the order of magnitude for each parameter, the simulation parameter and its weight are obtained for typical flight conditions. Results indicate that the analytical method supports the existing criterion of selective simulation parameters and provides suggestions to improve the simulation criterion. What is more, this paper illustrates that selective simulation parameters vary significantly as flight environment changes, and the ranking of simulation parameters is given by various flight conditions. By applying theoretical method, it is verified that viscous interaction parameter is one of the most significant simulation factors for hypersonic aerodynamic test, which coincides with conclusions of scholars abroad.

参考文献

[1] Frank K L. Advanced hypersonic test facilities[M]. Virginia: AIAA, 2002: 17-27.



[2] Tang Z Z. Hypersonic aerodynamic test[M]. Beijing: National Defense Industry Press, 2004: 45-53 (in Chinese). 唐志共. 高超声速气动力试验[M]. 北京: 国防工业出版社, 2004: 45-53.



[3] Kenneth W W, Mary F S. A comparison of hypersonic vehicle flight and prediction results, NASA/TM-104313[R]. Hampton.: NASA Langleg Resarch Center, 1995.



[4] Dinesh K P, Periklis E P, Carol B D, et al. Shuttle orbiter contingency abort aerodynamics: real gas effects and high angles of attack[C]//41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.



[5] Lin J Q. Deterministic problems applied to mathematics in natural science[M]. Beijing: Science Press, 2010: 238-256 (in Chinese). 林家翘. 自然科学中确定性问题的应用数学[M]. 北京: 科学出版社, 2010: 238-256.



[6] Tan Q M. Dimensional analysis[M]. Hefei: University of Science and Technology of China Press, 2007: 152-167 (in Chinese). 谈庆明. 量纲分析[M]. 合肥: 中国科学技术大学出版社, 2007: 152-167.



[7] Wu W Y. Fluid mechanics[M]. Beijing: Peking University Press, 2006: 171-179 (in Chinese). 吴望一. 流体力学[M]. 北京: 北京大学出版社, 2006: 171-179.



[8] White F M. Viscous fluid flow[M]. 2nd ed. New York: MaGraw-Hill Inc. Press, 1991: 233-253.



[9] Chen M Z. Fundamentals of viscous fluid dynamics[M]. Beijing: Higher Education Press, 2002: 24-27 (in Chinese). 陈懋章. 黏性流体动力学基础[M]. 北京: 高等教育出版社, 2002: 24-27.



[10] Anderson J D. Hypersonic and high temperature gas dynamics[M]. 2nd ed. Washington, D.C.: AIAA, 2006: 266-271.



[11] Bowcutt K G. Hypersonic vehicle systems integration:vehicle aerothermodynamic analysis and thermal management design[R]. Washington, D.C.: National Institute of Aerospace, 2007.



[12] Maus J R, Griffith B J, Szema K Y. Hypersonic Mach number and real gas effects on space shuttle orbiter aerodynamics[C]//21st Aerospace Sciences Meeting. Reston: AIAA, 1983.



[13] White A W, Arrington J P, McCandless R S. Performance aerodynamics of aero-assisted orbital transfer vehicles[C]//AIAA 22nd Aerospace Sciences Meeting. Reston: AIAA, 1984.



[14] Maus J R, Griffith B J, Tolbert D G. Understanding space shuttle flight data by use of wind tunneland CFD results[C]//AIAA 2nd Flight Testing Conference. Reston: AIAA, 1983.



[15] Plyashechnik V I. Investigation of the influence of parameter on the aerodynamic characteristics of a body of revolution with the contour generatrix break at hypersonic velocities, SPC94-4009[R]. Moscow: Central Aerodynamics Institute, 1998.

文章导航

/