外物损伤对民用飞机短舱内/外流气动特性的影响
收稿日期: 2014-04-08
修回日期: 2014-05-18
网络出版日期: 2015-03-31
Effects of foreign object damage on civil aircraft nacelle internal/external aerodynamic characteristics
Received date: 2014-04-08
Revised date: 2014-05-18
Online published: 2015-03-31
根据民用飞机动力装置/机体适航验证研究需要,结合三维有限元碰撞冲击仿真,进行了外物损伤(FOD)条件下发动机短舱内/外流数值模拟分析,初步获得了外罩变形对短舱气动特性的影响。结果表明:结合三维有限元碰撞冲击仿真进行的民用飞机短舱气动特性数值模拟,可以较好地分析FOD对发动机短舱内/外流气动特性和安全性能的影响;在内流方面,外罩和唇口的变形导致了巡航状态和低速大流量等状态短舱内流品质降低,一定程度上影响了进气道流通能力并进一步降低了发动机效率;在外流方面,外物损伤变形导致的气流分离致使局部唇口的前缘吸力丧失,这使得FOD短舱的阻力系数始终比光滑短舱的大,但是当外罩流动均处于失速状态时,两者的阻力特性差异降低。通过对严重影响短舱气动特性或飞机安全性的FOD进行评估,表明该研究成果可以为短舱结构设计的优化和民用飞机安全性分析提供技术依据与建议。
姬昌睿 , 刘凯礼 , 张鹏飞 , 司江涛 . 外物损伤对民用飞机短舱内/外流气动特性的影响[J]. 航空学报, 2015 , 36(3) : 772 -781 . DOI: 10.7527/S1000-6893.2014.0108
The aerodynamic characteristic of a civil aircraft nacelle with foreign object damage (FOD) is numerically simulated which is motivated by the engine/airframe airworthiness validation. The effects of FOD on nacelle internal/external flow characteristics and their underlying flow physics are investigated. The results suggest that the influence of FOD on the nacelle aerodynamic characteristics and the safety performance can be preferably learned in the investigation which are based on the three-dimensional finite element simulation of collision impact conducted beforehand; the damage and deformation of the cowl result in a reduced outflow quality and affect the through flow capacity of the inlet and further reduce the engine efficiency, while results in a loss of suction at the lip which leads to even greater drag coefficient of nacelle with FOD than the smooth one. Although the drag coefficients in general are becoming similar between the two when the outflows are stalling at the cowl of nacelle. The study also indicates that the numerical simulation performed in this paper will provide a technical basis and some recommendations to the safety assessment of the civil aircraft and structural design of the engine nacelle.
[1] Seddon J, Goldsmith E L. Intake aerodynamics[M]. United Kingdom: Blackwell Publishing LTD., 1999: 205-210.
[2] Farokhi S. Aircraft propulsion[M]. Liu H, Chen F, Du C H, translated. Shanghai: Shanghai Jiao Tong University Press, 2011: 252-261 (in Chinese). Farokhi S. 飞机推进[M]. 刘洪, 陈方, 杜朝辉, 译. 上海: 上海交通大学出版社, 2011: 252-261.
[3] Yadlin Y, Shmilovich A. Computational method for assessment of flow control techniques for airplane propulsion systems, AIAA-2008-4084[R]. Reston: AIAA, 2008.
[4] Cao G Z, Ji H H, Hu Y P, et al. An icing model for simulating three dimensional ice accretion on the upwind surfaces of a plane[J]. Journal of Aerospace Power, 2011, 26(9): 1954-1963 (in Chinese). 曹广州, 吉洪湖, 胡娅萍, 等. 模拟飞机迎风面三维积冰的数学模型[J]. 航空动力学报, 2011, 26(9): 1954-1963.
[5] Sokhey J S. Analysis of installed wind tunnel test results on large bypass ratio engine/nacelle installations, AIAA-1990-2146[R]. Reston: AIAA, 1990.
[6] MacKinnon M I K, Mehta B K. Factors influencing nacelle design on 747, AIAA-1979-1236[R]. Reston: AIAA, 1979.
[7] Kamel M A, Theo G K J, Kenneth J D W. Icing calculations on a typical commercial jet engine inlet nacelle, AIAA-1994-0610[R]. Reston: AIAA, 1994.
[8] Jin W J, Taghavi R. Computational study of the effects of ice accretions on the flowfields in the M2129 S-duct inlet, AIAA-2008-0075[R]. Reston: AIAA, 2008.
[9] Li Y L, Shi X P. Investigation of the present status of research on bird impacting on commercial airplanes[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 189-198 (in Chinese). 李玉龙, 石霄鹏. 民用飞机鸟撞研究现状[J]. 航空学报,2012, 33(2): 189-198.
[10] Wilbeck J S, Barber J. Bird impact loading[J]. The Shock and Vibration Bulletin, 1978, 48(2): 115-122.
[11] Georgiadis S, Gunnion A J, Thomason R S, et al. Bird strike simulation for certification of the Boeing 787 composite moveable trailing edge[J]. Composite Structures, 2008, 86(1-3): 258-268.
[12] Lavoie M A, Gakwaya A, Ensan M N, et al. Bird's substitute tests results and evaluation of available numerical methods[J]. International Journal of Impact Engineering, 2009, 36(10-11): 1276-1287.
[13] Kennedy S, Robinson T, Spence S, et al. The effect of lip skin damage on inlet distortion, AIAA-2010-0747[R]. Reston: AIAA, 2010.
[14] McCarthym A, Xiao J R, Petrinic N, et al. Modeling of bird strike on an aircraft wing leading edge made from fibre metal laminates—part 1: material modeling[J]. Applied Composite Materials, 2004 (11): 295-315.
[15] Hirose N, Asai K, Ikawa K. Transonic 3D Euler analysis of flows around fan-jet engine and TPS (turbine powered simulator), NAL-TR-1045[R]. [S.l]: National Aerospace Laboratory of Japan, 1989.
[16] Zhang Z, Tao Y, Huang G C. Numerical simulation about the spillage drag of engine nacelle[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 547-553 (in Chinese). 张兆, 陶洋, 黄国川.发动机短舱溢流阻力的数值模拟[J]. 航空学报, 2013, 34(3): 547-553.
[17] Richard J R E. An investigation of several NACA 1-series axisymmetric inlets at Mach numbers from 0.4 to 1.29, NASA TM X-2917[R].Washington, D.C.: NASA, 1974.
/
〈 | 〉 |