综述

新一代多用途载人飞船概念研究

  • 杨雷 ,
  • 张柏楠 ,
  • 郭斌 ,
  • 左光 ,
  • 石泳 ,
  • 黄震
展开
  • 中国空间技术研究院 载人航天总体部, 北京 100094
杨雷 男, 博士, 研究员, 载人登月项目技术负责人。主要研究方向: 载人航天器总体。Tel: 010-68114388 E-mail: yanglei@cast.net;张柏楠 男, 硕士, 研究员, 载人航天工程飞船系统总设计师。主要研究方向: 载人航天工程总体设计。Tel: 010-68745561

收稿日期: 2014-08-13

  修回日期: 2014-12-19

  网络出版日期: 2015-03-31

Concept definition of new-generation multi-purpose manned spacecraft

  • YANG Lei ,
  • ZHANG Bainan ,
  • GUO Bin ,
  • ZUO Guang ,
  • SHI Yong ,
  • HUANG Zhen
Expand
  • Institution of Manned Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China

Received date: 2014-08-13

  Revised date: 2014-12-19

  Online published: 2015-03-31

摘要

在"神舟"载人飞船进入成熟稳定期后,中国有必要尽早启动新一代多用途载人飞船的论证和研制。本文对国外新一代载人飞船的技术方案特点、新的设计理念及发展现状进行了分析,从适应多任务、降低运营成本、钝头体气动外形、更高安全可靠性以及新型轻质材料使用等多个方面总结了国外新一代载人飞船的技术发展趋势。初步分析了中国发展新一代载人飞船的近地轨道、载人登月、载人登小行星、载人登火星等任务需求,基本确定了新一代飞船的总体性能参数,并在此基础上梳理了新一代载人飞船技术途径,初步提出了两种方案设想,为中国新一代载人飞船的研制提供参考。

本文引用格式

杨雷 , 张柏楠 , 郭斌 , 左光 , 石泳 , 黄震 . 新一代多用途载人飞船概念研究[J]. 航空学报, 2015 , 36(3) : 703 -713 . DOI: 10.7527/S1000-6893.2014.0355

Abstract

With the Shenzhou spacecraft entering into the stage of maturity, it is of necessity to launch the research and development of a new-generation multi-purpose manned spacecraft. In this paper, we firstly generalize the technological characteristics, the design concept and the status quo of the foreign new-generation manned spacecraft. Based on this, we summarize their technological trend, i.e., multi-task adaption, cost reduction, bluntbody aerodynamic configuration, high safety reliability and new lightweight materials. Then, we primarily analyze the task requirements of China's new-generation manned spacecraft, including low earth orbit flight mission, as well as manned flights to the Moon, the asteroid and the Mars. We basically set the parameters of the overall performance. Finally, we sort out the technological approaches of it and propose two design schemes, which could provide some reference for the research of China's new-generation manned spacecraft.

参考文献

[1] Wang Y, Lu Y P. Relating technical analysis of the Constellation Program[C]//Proceedings of the 13th National Conference on Control Technology of the Space and Moving Body. Beijing: Chinese Association of Automation, 2008: 328-332 (in Chinese). 王银, 陆宇平. "星座"计划相关技术分析[C]//全国第十三届空间及运动体控制技术学术年会论文集. 北京: 中国自动化学会, 2008: 328-332.



[2] Wang M Y. The future of the American manned Constellation Program[J]. Space International, 2009(3): 22-25 (in Chinese). 王鸣阳. 美国载人航天星座计划的未来[J]. 国际太空, 2009(3): 22-25.



[3] Deng X M. The Constellation Program that realizing man's back to the Moon[J]. World Science, 2009(8): 7-8 (in Chinese). 邓雪梅. 实现人类重返月球的"星座"计划[J]. 世界科学, 2009(8): 7-8.



[4] Huang Z C. Why was the American Constellation Program cancelled[J]. Space Exploration, 2010(3): 22-23 (in Chinese). 黄志澄. 美国重返月球计划为何胎死腹中[J]. 太空探索, 2010(3): 22-23.



[5] Zhang R. Development of American human spaceflight commercial transportation[J]. Spacecraft Engineering, 2011, 20(6): 87-89 (in Chinese). 张蕊. 美国载人航天商业运输的发展[J]. 航天器工程, 2011, 20(6): 87-89.



[6] David E W. Commercial crew development environmental control and life support system status, JSC-CN-22060[R]. Houston, TX: Johnson Space Center, 2011.



[7] Daniel Z, Sam W, Bong W. The first human asteroid mission: target selection and conceptual mission design, AIAA-2010-8370[R]. Reston: AIAA, 2010.



[8] Paul M, Larry P. Orion multi purpose crew vehicle exploration flight test objectives[C]//63th IAC. Naples: International Aerospace Federation, 2012: IAC-12.B6.1.9.



[9] John F L, Richard A B, Cynthia D C, et al. Multi purpose crew vehicle environmental control and life support development status, JSC-CN-27502[R]. Houston, TX: Johnson Space Center, 2012.



[10] Detlef W. Building transatlantic partnerships in space exploration the MPCV-SM study, E18271[R]. Cleveland,OH: Glenn Research Center, 2012.



[11] Murphy K J, Bibb K L, Brauckmann G J, et al. Orion crew module aerodynamic testing, AIAA-2011-3502[R]. Reston: AIAA, 2011.



[12] Bibb K L, Walker E L, Brauckmann G J, et al. Development of the orion crew module static aerodynamic database, Part II: supersonic/subsonic, AIAA-2011-3507[R]. Reston: AIAA, 2011.



[13] NASA selects SpaceX to be part of America's human spaceflight program[EB/OL].[2014-06-01]. http://www.spacex.com/news/2014/09/16/nasa-selects-spacex-be-part-americas-human-spaceflight-program.



[14] Lauren D. Latest developments on SpaceX's Falcon 1 and Falcon 9 launch vehicles and dragon spacecraft[C]//The International IEEE Aerospace Conference. Piscataway, NJ: IEEE, 2009: 1-15.



[15] Paul M. Gotcha! Robot arm plugs SpaceX Dragon into the ISS[EB/OL]. (2012-05-25) [2014-06-01]. http://www.newscientist.com/blogs/shortsharpscience/2012/05/grapple-and-hold-dragon-berths.html.



[16] Chen J. Brief analysis of the docking test of the American Dragon spacecraft and International Space Station[J]. Aerospace China, 2012(8): 24-29 (in Chinese). 陈杰. 美国"龙"飞船国际空间站对接试验简析[J]. 中国航天, 2012(8): 24-29.



[17] Long F. The American private Dragon spacecraft fly to the International Space Station[J]. Aerospace China, 2012(8): 20-23 (in Chinese). 龙飞. 美私营"龙"飞船飞往国际空间站[J]. 中国航天, 2012(8): 20-23.



[18] Mckinney J, Ferguson P, Weber M L, et al. Initial testing of the CST-100 aerodynamic deceleration system, AIAA-2013-1263[R]. Reston: AIAA, 2013.



[19] McCann J R, DePauw T, McKinney J, et al. Boeing CST-100 landing and recovery system design and development of an integrated approach to landing, AIAA-2013-5306[R]. Reston: AIAA, 2013.



[20] Mckinney J, Ferguson P, Weber M L, et al. Boeing CST-100 landing and recovery system design and development testing, AIAA-2013-1262[R]. Reston: AIAA, 2013.



[21] Zea L, Over S, Klaus D, et al. Development of a cockpit architecture for the Dream Chaser orbital vehicle, AIAA 2012-3421[R]. Reston: AIAA, 2012.



[22] Howard R D, Crevor Z C, Mosher T, et al. Dream Chaser commercial crewed spacecraft overview, AIAA-2011-2245[R]. Reston: AIAA, 2011.



[23] Erik S. SpaceX: making commercial spacecraft a reality[M]. Chichester, UK: Praxis Publishing, 2013: 123-128.



[24] Frank W T, Russell H. Dream ChaserTM for space transportation: tourism, NASA and military integrated on an Atlas V, AIAA-2008-7837[R]. Reston: AIAA, 2008.



[25] Molly K M, Jonathan G M. Dream Chaser environmental control and life support system: an overview, AIAA-2012-3453[R]. Reston: AIAA, 2012.



[26] Molly K M, Jonathan G M. Dream Chaser thermal control system: an overview, AIAA-2012-3452[R]. Reston: AIAA, 2012.



[27] Krevor Z, Howard R, Mosher T. Achieving full ascent abort coverage with the dream chaser space system, AIAA-2011-7102[R]. Reston: AIAA, 2011.



[28] David W, Leonard E. Dream Chaser on-orbit operations: preliminary trajectory design and analysis, AIAA-2011-6654[R]. Reston: AIAA, 2011.



[29] Jackson P. Jane's all the world's aircraft[J]. London: Jane's Information Group, 2014.



[30] Carr R W, Lagimoniere E. Range safety footprint analysis for the Dream Chaser engineering test article using trajectory optimization, AIAA-2013-4647[R]. Reston: AIAA, 2013.



[31] Yang G. The Russian new manned spacecraft project—PPTS[J]. Aerospace China, 2011(7): 16-21 (in Chinese). 阳光. 俄罗斯的新载人飞船项目——PPTS[J]. 中国航天, 2011(7): 16-21.



[32] Russian space program: a decade review[EB/OL](2010-02-19). [2014-06-01]http://www.russianspaceweb.com/russia_2010s.html



[33] Evolution of the PTK NP design[EB/OL]. [2014-06-01]. http://www.russianspaceweb.com/ptk_va.html



[34] PPTS spacecraft development during 2009[EB/OL]. [2014-06-01]. http://www.russianspaceweb.com/ptk_pu.html.



[35] Zavyalov V, Metan v kosmicheskoi ustanovke. Space equipment race[EB/OL]. [2014-06-01]. http://zavjalov.okis.ru/metan.html (in Russian). Zavyalov V, Metan v kosmicheskoi ustanovke. Метан в космической установке[EB/OL]. [2014-06-01]. http://zavjalov.okis.ru/metan.html.

文章导航

/