高速飞行器翼面结构热振动试验的TARMA模型方法
收稿日期: 2014-09-30
修回日期: 2015-03-02
网络出版日期: 2015-03-25
基金资助
省部级项目
Thermal vibration test on wing structure of high-speed flight vehicle using TARMA model method
Received date: 2014-09-30
Revised date: 2015-03-02
Online published: 2015-03-25
Supported by
Ministry Level Project
高速飞行器翼面结构的热振动试验研究对这类飞行器的设计和安全飞行具有重要的意义。采用时变自回归滑动平均(TARMA)模型方法建立了受热时变结构系统模态频率辨识的数学模型,并用一个数值算例进行了验证。将地面振动测试系统与瞬态热环境模拟系统相结合,设计了翼面结构热振动试验系统并模拟结构的瞬态温度场,同时对纯随机激振力激励下受热时变结构系统的振动位移信号进行测量,并用TARMA模型对时变固有频率进行了辨识,获得了前4阶固有频率随加热时间的变化规律,并将辨识结果与数值计算结果进行了比较,两者误差在5%以内。另外,在稳态均匀热环境下辨识得到的结构系统固有频率变化与数值计算结果也吻合得很好。通过将均匀温度场与瞬态温度场下的结果进行对比分析,指出了瞬态热环境下时变结构的固有频率随加热时间变化的趋势主要由结构材料属性的退化和结构内部不均匀热应力的影响共同决定。
刘浩 , 李晓东 , 杨文岐 , 孙侠生 . 高速飞行器翼面结构热振动试验的TARMA模型方法[J]. 航空学报, 2015 , 36(7) : 2225 -2235 . DOI: 10.7527/S1000-6893.2015.0057
It is important to investigate the thermal modal test of wing structure in the design and securely flight of the modern high-speed flight vehicle.The mathematical model of modal parameters identification of time-varying thermal structure, which is validated in a numerical example, is founded by time-dependent auto regression moving average (TARMA) model method.The wing structure thermal modal test system is designed by combining the ground vibration test system with the transient thermal environment simulation system.The vibration displacement of test structure is measured under random excitation signal.The change of the first four modal frequencies with heating time identified by TARMA model, that is founded by vibration displacement and shaking force measured by thermal modal test system, are well agreed with the results of numerical computation, and the error between them is less than 5%.In addition, the identification results under uniform temperature distribution thermal structure are well agreed with the results of the numerical computation, too.The reason of modal frequencies of time varying thermal structure changing with the heating time is discovered, by comparing the identification results under transient temperature field with those under uniform temperature field.The modal frequencies are influenced by structure material degraded and uniform thermal stress in structure together.
[1] Jack J M, Adam J C, Andrew R C. Aerothermoelastic modeling considerations for hypersonic vehicles, AIAA-2009-7397[R]. Reston: AIAA, 2009.
[2] Falkiewicz N J, Cesnik C E S, Crowell A R, et al. Reduced order aerothermoelastic framework for hypersonic vehicle control simulation, AIAA-2010-7928[R]. Reston: AIAA, 2010.
[3] Vosteen L F, Fuller K E.Behavier of a cantilever plate under rapid heating conditions, NACA RM L55E2[R]. Washington, D. C.: NACA, 1955.
[4] Richard A, Pride L, Ross L.Some effects of rapid heating on box beam[C]//NACA Conference on Aircraft Loads, Flutter and Structures. Washington, D.C.: NACA, 1955: 489-495.
[5] Mcintyre K L.Vibration testing during high heat rates, RTD-TDR-63-4197, Part1[R].Hampton: NASA Langley Research Center, 1963.
[6] Vosteen L F, McWithey R R, Thomson R G. Effect of transient heating on vibration frequencies of some simple wing structures, NACA Technical Note 4054[R]. Washington, D. C.: NACA, 1957.
[7] Spivey N D. High-temperature modal survey of a hot-structure control surface[C]//The 27th International Congressof the Aeronautical Sciences, 2010.
[8] Wu D F, Zhao S G, Pan B, et al. Reserch on thermal-vibration joint test for wing structure of high-speed cruise missile[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1633-1642 (in Chinese). 吴大方, 赵寿根, 潘兵, 等. 高速巡航导弹翼面结构热振联合试验研究[J]. 航空学报, 2012, 33(9): 1633-1642.
[9] Wu D F, Zhao S G, Pan B, et al. Experiment study on high temperature thermal-vibration characteristics for hollow wing structure of high-speed flight vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 598-605 (in Chinese). 吴大方, 赵寿根, 潘兵, 等. 高速飞行器中空翼结构高温热振动特性试验研究[J]. 力学学报, 2013, 45(4): 598-605.
[10] Su H C, Qian Y B, Li Z W, et al. The study of rudder thermo-modal test technique[J]. Structure & Environment Engineering, 2011, 38(5): 18-24 (in Chinese). 苏华昌, 骞永博, 李增文, 等. 舵面热模态试验技术研究[J]. 强度与环境, 2011, 38(5): 18-24.
[11] Xiao N F, Liu Y Q. Research of control technology in thermal-vibration test[J]. Structure & Environment Engineering, 2012, 39(2): 53-57 (in Chinese). 肖乃风, 刘永清. 热振联合试验控制技术研究[J]. 强度与环境, 2012, 39(2): 53-57.
[12] Shi Z Y, Law S S. Identification of linear time-varying dynamical systems using Hilbert transform and EMD method[J]. Journal of Application Mechanics, 2007, 74(5): 223-230.
[13] Xu X Z, Hua H X, Zhang Z Y, et al. Time-varying modal frequency identification by using time-frequency representation[J]. Journal of Vibration and Shock, 2002, 21(2): 36-44 (in Chinese). 续秀忠, 华宏星, 张志谊, 等. 应用时频表示进行结构时变模态频率辨识[J]. 振动与冲击, 2002, 21(2): 36-44.
[14] Shi Z Y, Shen L. Parameter identification of linear time-varying dynamical system based on wavelet method[J]. Journal of Vibration, Measurement & Diognosis, 2008, 28(2): 108-112 (in Chinese). 史治宇, 沈林. 基于小波方法的时变动力系统参数识别[J]. 振动测试与诊断, 2008, 28(2): 108-112.
[15] Xu X Z, Zhang Z Y. Decomposition of time-varying modal by time-frequency filter[J]. Noise and Vibration Control, 2005(5): 15-17 (in Chinese). 续秀忠, 张志谊. 基于时频滤波的时变模态分解方法[J]. 噪声与振动控制, 2005(5): 15-17.
[16] Yu K P. Study on time-varying structural dynamics numerical algorithm and modal parameter identification method[D]. Harbin: Harbin Institute of Technology, 2000 (in Chinese). 于开平. 时变结构动力学数值方法及其模态参数识别方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2000.
[17] Xu X Z, Zhang Z Y, Hua H X, et al. Identification of time-variant modal parameters by a time-varying parameter approach[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 230-233 (in Chinese). 续秀忠, 张志谊, 华宏星, 等. 应用时变参数建模方法辨识时变模态参数[J]. 航空学报, 2003, 24(3): 230-233.
[18] The Editor Committee of "China Aeronautical Material Handbook". China aeronautical material handbook: Vol. 4[M]. 2nd ed. Beijing: China Standards Press, 2001: 74-82 (in Chinese). 《中国航空材料手册》编辑委员会. 中国航空材料手册第4卷,钛合金、铜合金[M]. 2版. 北京: 中国标准出版社, 2001: 74-82.
/
〈 | 〉 |