流体力学与飞行力学

基于自由尾迹方法的自转旋翼气动特性研究

  • 王俊超 ,
  • 谭剑锋 ,
  • 李建波 ,
  • 徐明
展开
  • 1. 南京航空航天大学直升机旋翼动力学国家级重点实验室, 南京 210016;
    2. 南京工业大学机械与动力工程学院, 南京 211816
王俊超,男,博士研究生。主要研究方向:直升机总体设计、直升机空气动力学、直升机飞行力学。E-mail:wjc@nuaa.edu.cn;谭剑锋,男,博士,讲师。主要研究方向:旋翼空气动力学与结构动力学,风机空气动力学。E-mail:windtam2003@gmail.com;李建波,男,博士,研究员,博士生导师。主要研究方向:旋翼类飞行器总体设计研究、直升机气动及飞行动力学研究、旋翼结构及动力学设计。Tel:025-84895188,E-mail:ljb101@nuaa.edu.cn;徐明,男,博士研究生。主要研究方向:直升机总体设计、旋翼空气动力学、直升机飞行力学。E-mail:xuming18237@nuaa.edu.cn

收稿日期: 2014-12-10

  修回日期: 2015-03-13

  网络出版日期: 2015-03-20

基金资助

国家自然科学基金(11202097);航空科学基金(2013ZA52014);江苏高校优势学科建设工程资助项目

Investigation of autorotating rotor aerodynamic characteristics based on free wake method

  • WANG Junchao ,
  • TAN Jianfeng ,
  • LI Jianbo ,
  • XU Ming
Expand
  • 1. Science and Technology on Rotorcraft Aeromechanics Laboratory, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 211816, China

Received date: 2014-12-10

  Revised date: 2015-03-13

  Online published: 2015-03-20

Supported by

National Natural Science Foundation of China(11202097);Aeronautical Science Foundation of China(2013ZA52014);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

为研究自转旋翼的气动特性,建立了自转旋翼的自由尾迹方法计算模型,并耦合桨叶挥舞运动模型和自转旋翼配平模型,建立了一种分析自转旋翼气动特性的方法。以某试验自转旋翼为算例对该方法进行了验证并运用该方法研究了自转旋翼的尾迹几何形状和桨盘诱导入流分布特性。研究结果表明:建立的自由尾迹方法计算模型可以满足自转旋翼气动特性分析的需求,相比传统的近似入流模型,该自由尾迹方法模型精度更高;前飞时自转旋翼尾迹随时间推移自桨盘处向桨盘后上方运动,水平面内自转旋翼尾迹畸变略小于驱转旋翼;自转旋翼桨盘诱导入流呈非均匀分布,从桨盘前缘到后缘,下洗入流大致呈不断增加趋势,在相同拉力水平下,自转旋翼90°方位角附近及桨盘后缘的诱导入流小于驱转旋翼。

本文引用格式

王俊超 , 谭剑锋 , 李建波 , 徐明 . 基于自由尾迹方法的自转旋翼气动特性研究[J]. 航空学报, 2015 , 36(11) : 3540 -3548 . DOI: 10.7527/S1000-6893.2015.0076

Abstract

To investigate autorotating rotor aerodynamic characteristics, a free wake method calculation model which couples blade flapping motion model and trim model of autorotating rotor is established in this paper, and an analysis method for autorotating rotor aerodynamic characteristics is established. Then, this method is verified by a test example of an autorotating rotor based on the method. Lastly, wake geometry and rotor disk induced inflow distribution characteristics of autorotating rotor are investigated by the method. The results indicate that the free wake method calculation model established in this paper can meet the requirement of autorotating rotor aerodynamic characteristics analysis and the model accuracy is higher compared with the traditional approximate inflow model. Autorotating rotor wake moves upward and backward from the rotor disk as time goes on in the forward flight. The distortion of autorotating rotor wake is slightly smaller than powered rotor in the horizontal plane. The distribution of autorotating rotor disk induced inflow is nonuniform. Downwash inflow generally increases gradually from the leading edge to the trailing edge of the rotor disk. Autorotating rotor induced inflow is less than powered rotor near 90° azimuth and at the trailing edge of the rotor disk at the same thrust.

参考文献

[1] Floros M W, Johnson W. Performance analysis of the slowed-rotor compound helicopter configuration[C]//American Helicopter Society 4th Decennial Specialists' Conference on Aeromechanics. Alexandria:AHS, 2004:1-19.
[2] Yeo H, Johnson W. Aeromechanics analysis of a heavy lift slowed-rotor compound helicopter[J]. Journal of Aircraft, 2007, 44(2):501-508.
[3] Nagaraj V T, Chopra I. Dynamics considerations for high speed flight of compound helicopters[C]//American Helicopter Society 58th Annual Forum. Alexandria:AHS, 2002:1-14.
[4] Yeo H, Johnson W. Optimum design of a compound helicopter[J]. Journal of Aircraft, 2009, 46(4):1210-1221.
[5] Berry B, Chopra I. Performance and vibratory load measurements of a slowed-rotor at high advance ratios[C]//American Helicopter Society 68th Annual Forum. Alexandria:AHS, 2012:1-13.
[6] Leishman J G. Development of the autogiro:a technical perspective[J]. Journal of Aircraft, 2004, 41(4):765-781.
[7] Kim H Y, Sheen D J, Park S O. Numerical simulation of autorotation in forward flight[J]. Journal of Aircraft, 2009, 46(5):1642-1648.
[8] Rezgui D, Lowenberg M H, Bunniss P C. Experimental and numerical analysis of the stability of an autogiro teetering rotor[C]//Americian Helicopter Society 64th Annual Forum. Alexandria:AHS, 2008:1-15.
[9] Rigsby J, Prasad J. Performance and trim analysis of lightly loaded rotors in high advance ratio autorotation[C]//American Helicopter Society Aeromechanics Specialists' Conference. Alexandria:AHS, 2010:1-23.
[10] Niemi E E, Gowda B V. Gyroplane rotor aerodynamics revisited-blade flapping and RPM variation in zero-g flight[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011:1-17.
[11] Wang H J, Gao Z. Aerodynamic virtue and steady rotary speed of autorotating rotor[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(4):337-339(in Chinese).王焕瑾,高正.自转旋翼的气动优势和稳定转速[J].航空学报, 2001, 22(4):337-339.
[12] Zhu Q H. Research on key technologies of gyroplane preliminary design[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).朱清华.自转旋翼飞行器总体设计关键技术研究[D].南京:南京航空航天大学, 2007.
[13] Cui Z, Han D, Li J B. Study on aerodynamic characteristics of auto-rotating rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1791-1799(in Chinese).崔钊,韩东,李建波.加装格尼襟翼的自转旋翼气动特性研究[J].航空学报, 2012, 33(10):1791-1799.
[14] Ji L Q, Zhu Q H, Cui Z, et al. Research on aerodynamic characteristics of autorotating coaxial twin-rotor[J]. Journal of Aerospace Power, 2012, 27(9):2013-2020(in Chinese).姬乐强,朱清华,崔钊,等.共轴双旋翼自转气动特性[J].航空动力学报, 2012, 27(9):2013-2020.
[15] Wang J C, Li J B, Han D. Theoretical modeling technology for gyroplane flight performance[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3244-3253(in Chinese).王俊超,李建波,韩东.自转旋翼机飞行性能理论建模技术[J].航空学报, 2014, 35(12):3244-3253.
[16] Wang J C, Li J B. Effects of wing on autogyro longitudinal stability[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):151-160(in Chinese).王俊超,李建波.机翼对自转旋翼机纵向稳定性的影响[J].航空学报, 2014, 35(1):151-160.
[17] Kini S, Conlisk A T. Nature of locally steady rotor wakes[J]. Journal of Aircraft, 2002, 39(5):750-758.
[18] Ananthan S, Leishman J G. Transient helicopter rotor wakes in response to time-dependent blade pitch inputs[J].Journal of Aircraft, 2004, 41(5):1025-1041.
[19] Fletcher T M, Brown R E. Helicopter tail rotor thrust and main rotor wake coupling in crosswind flight[J]. Journal of Aircraft, 2010, 47(6):2136-2148.
[20] Yoo S J, Jeong M S, Lee I. Wake effects of free-wake model on aeroelastic behavior of hovering rotors[J]. Journal of Aircraft, 2011, 48(4):1184-1192.
[21] Tan J F, Wang H W. Highly efficient unsteady panel time-marching free wake for aerodynamics of rotorcraft[J].Journal of Aircraft, 2014, 51(1):54-61.
[22] Bagai A, Leishman J G. Rotor free wake modeling using pseudo implicit technique including comparisons with experimental data[J]. Journal of the American Helicopter Society, 1995, 40(3):29-41.

文章导航

/