固体力学与飞行器总体设计

叶尖间隙对跨声速压气机叶片气动阻尼的影响

  • 杨晓东 ,
  • 侯安平 ,
  • 李漫露 ,
  • 倪奇峰
展开
  • 1. 北京航空航天大学 能源与动力工程学院 航空发动机气动热力国家科技重点实验室, 北京 100191;
    2. 中航空天发动机研究院有限公司, 北京 101304
杨晓东 男, 博士研究生。主要研究方向: 叶轮机械气动弹性。 Tel: 010-82338808 E-mail: yang123931@163.com;侯安平 男, 博士, 副教授。主要研究方向: 叶轮机械气动弹性、流固耦合、非定常流动。 Tel: 010-82338808 E-mail: houap@buaa.edu.cn

收稿日期: 2014-06-09

  修回日期: 2014-12-19

  网络出版日期: 2015-03-11

基金资助

国家自然科学基金 (11290140, 50906001)

Influence of blade tip clearance on blade aerodynamic damping in transonic compressor

  • YANG Xiaodong ,
  • HOU Anping ,
  • LI Manlu ,
  • NI Qifeng
Expand
  • 1. National Key Laboratory of Science and Technology on Aero-Engines Aero-thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
    2. AVIC Academy of Aeronautic Propulsion Technology, Beijing 101304, China

Received date: 2014-06-09

  Revised date: 2014-12-19

  Online published: 2015-03-11

Supported by

National Natural Science Foundation of China (11290140, 50906001)

摘要

为了分析叶尖间隙对压气机气动阻尼的影响,基于相位延迟边界条件,建立了跨声速转子的气动阻尼计算模型,研究叶尖间隙对其流场及气动阻尼的影响。计算该转子在设计间隙条件下的气动性能、叶片模态以及颤振边界,和实验数据吻合较好,比较不同叶尖间隙(1.6%,3.2%,5.0%叶尖弦长)的转子气动性能,发现间隙增加使转子效率和压比均有显著的下降;对叶片表面非定常压力研究表明,叶片非定常压力对叶片振动的响应具有强三维特性,同时叶片间相位角(IBPA)和叶尖间隙流对其有显著的影响,由于叶尖间隙增加使叶尖流动的影响加强,导致叶尖区域由于振动造成的一阶谐波压力幅值相对减小,大间隙趋于恶化压力面的稳定性而对吸力面的影响在不同的叶片间相位角时不同;对于气动阻尼,在不同的叶片间相位角区域,叶尖间隙对其影响有显著的差异,甚至会产生截然相反的规律,特别是在设计状态,对于该转子,大间隙提高了叶片最不稳定状态的气动阻尼。

本文引用格式

杨晓东 , 侯安平 , 李漫露 , 倪奇峰 . 叶尖间隙对跨声速压气机叶片气动阻尼的影响[J]. 航空学报, 2015 , 36(6) : 1885 -1895 . DOI: 10.7527/S1000-6893.2015.0039

Abstract

Based on transonic compressor flutter test rotor, an efficient aerodynamic damping computational model using phased lagged boundary conditions is established to analyze the influence of blade tip clearance on compressor flow field and aerodynamic damping. Numerical results of rotor aerodynamic performance, blade mode and flutter boundary analysis with design tip clearance are closely consistent with the experimental results. The rotor aerodynamic performances with different tip clearances (1.6%, 3.2% and 5.0% tip chord) show that tip flows can significantly reduce the total pressure ratio and efficiency of rotor. Unsteady pressure results on blade surface indicate that the unsteady flow response is a strong three-dimensional nature. Inter-blade phase angle (IBPA) and tip clearance are crucial factors influencing blade surface unsteady pressure. The first harmonic pressure amplitude in blade tip region which is associated with blade vibration relatively weakens due to the enhancement of blade tip flow with the increase of blade tip clearance. The stability of pressure surface tends to worsen due to increasing blade tip clearance. However, the influence of blade tip clearance on suction surface depends on inter-blade phase angle. The influence of blade tip clearance on blade aerodynamic damping has significant differences at different inter-blade phase angle, even an inverse relationship. Specifically, the aerodynamic damping is enhanced with increasing blade tip clearance at the least stable inter-blade phase angle.

参考文献

[1] Smith L H, Jr. The effect of tip clearance on the peak pressure rise of axial-flow fans and compressors[C]//ASME Symposium on Stall, 1958: 149-152.
[2] Smith L H, Jr. Casing boundary layers in multistage axial flow compressors[J]. Flow Research on Blading, 1970, 106: 635-647.
[3] Kazutoyo Y, Hiroaki K, Masato F. et al. Effects of tip clearance on the stall inception process in an axial compressor rotor, ASME Paper, GT2013-95479[R]. New York: ASME, 2013.
[4] Kang S, Hirsch C. Experimental study on the three-dimensional flow within a compressor cascade with tip clearance: Part 1-velocity and pressure fields[J]. Journal of Turbomachinery, 1993, 115(3): 435-443.
[5] Bell D L, He L. Three-dimensional unsteady flow for an oscillating turbine blade and the influence of tip leakage [J]. Journal of Turbomachinery, 2000, 122(1): 93-101.
[6] Norryd M, Bölcs A. Experimental investigation of unsteady pressure behaviors in a linear turbine cascade[C]//The 8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, 1997.
[7] Sanders A J, Hassan K K, Rade D C. Experimental and numerical study of stall flutter in a transonic low-aspect ratio fan blisk[J]. Journal of Turbomachinery, 2004, 126(1): 166-174.
[8] Huang X Q, He L, Bell D L. Effects of tip clearance on aerodynamic damping in a linear turbine cascade [J]. Journal of Propulsion and Power, 2008, 24(1): 26-33.
[9] Yang H, He L, Wang Y R. Experimental study on aeroelasticity in linear oscillating compressor cascade: partII-tip-clearance effect[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 804-810 (in Chinese). 杨慧, 何力, 王延荣. 压气机线性振荡叶栅气弹实验研究(二): 叶尖间隙的影响[J]. 航空学报, 2008, 29(4): 804-810.
[10] Carta F O. Coupled blade-disk-shroud flutter instabilities in turbojet engine rotors[J]. Journal of Engineering for Power, 1967, 89(3): 419-427.
[11] Bendiksen O O. Aeroelastic problems in turbomachines, AIAA-1990-1157[R]. Reston: AIAA, 1990.
[12] Cinnella P, de Palma P, Pascazio G, et al. A numerical method for turbomachinery aeroelasticity[J]. Journal of Turbomachinery-Transactions of ASME, 2004, 126(2): 310-316.
[13] Srivastava R, Bakhle M A, Keith T G, et al. Aeroelastic analysis of turbomachinery PartII-Stability computations[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2004, 14(3): 382-402.
[14] Zhang W W, Su D, Zhang C A, et al. A CFD-based compositional methodology of unsteady aerodynamic modeling for turbomachinery[J]. Journal of Propulsion Technology, 2012, 33(1): 37-42 (in Chinese). 张伟伟, 苏丹, 张陈安, 等. 一种基于CFD的叶轮机非定常气动力组合建模方法[J]. 推进技术, 2012, 33(1): 37-42.
[15] Zheng Y, Wang J. Influence of frequency mistuning on aeroelastic stability of blade[J]. Journal of Aerospace Power, 2013, 28(5): 1029-1036 (in Chinese). 郑赟, 王静. 错频对叶片的气动弹性稳定性影响[J]. 航空动力学报, 2013, 28(5): 1029-1036.
[16] Erdos J I, Alzner E, McNall W. Numerical solution of periodic transonic flow through a fan stage[J]. AIAA Journal, 1977, 15(11): 1559-1568.
[17] He L. An Euler solution for unsteady flows around oscillating blades[J]. Journal of Turbomachinery, 1990, 112(4): 714-722.
[18] He L, Denton J D. Three-dimensional time marching inviscid and viscous solutions for unsteady flows around vibrating blades[J]. Journal of Turbomachinery, 1994, 116(3): 469-476.
[19] Hwang C J, Fang J M. Flutter analysis of cascades using an Euler/Navier-Stokes solution-adaptive approach[J]. Journal of Propulsion and Power, 1999, 15(1): 54-63.
[20] Sadeghi M, Liu F. Computation of cascade flutter by uncoupled and coupled Methods [J]. International Journal of Computational Fluid Dynamics, 2005, 19(8): 559-569.
[21] Debrabandere F, Tartinville B, Hirsch C H, et al. Fluid-structure interaction using a modal approach, ASME Paper, 2011-GT-45692[R]. New York: ASME, 2011.
[22] Yang Q Z, Xiao J, Zhou X H. Cascade flutter investigation base on flow-structure coupling unsteady flow[J]. Journal of Propulsion Technology, 2005, 26(6): 526-530 (in Chinese). 杨青真, 肖军, 周新海.基于气/固耦合非定常流动的叶栅颤振分析[J]. 推进技术, 2005, 26(6): 526-530.
[23] Quan J L, Zhang W W, Su D, et al. Flutter analysis of turbomachinery cascades based on coupled CFD/CSD method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2019-2028 (in Chinese). 全金楼, 张伟伟, 苏丹, 等. 基于CFD/CSD 时域耦合方法的多通道叶栅颤振分析[J]. 航空学报, 2013, 34(9): 2019-2028.
[24] Feng Y C, Hu Z A, Zhao X H, et al. Experimental investigation on flow induce vibration in axial flow compressors[J]. Journal of Beijing Institute of Aeronautics and Astronautics, 1986(4): 103-111 (in Chinese). 冯毓诚, 胡宗安, 赵秀华, 等. 轴流压气机流体诱发振动的实验研究[J]. 北京航空学院学报, 1986(4): 103-111.
[25] Elder R, Woods I, Patil S, et al. Investigation of efficient CFD methods for the prediction of blade damping, ASME Paper, GT2013-95005[R]. New York: ASME, 2013.
[26] Yang X D, Hou A P, Li M L, et al. Flutter prediction of turbomachinery based on phase lagged boundary condition[J]. Journal of Aerospace Power, 2014, 29(8): 1846-1854 (in Chinese). 杨晓东, 侯安平, 李漫露, 等. 相位延迟条件在叶轮机械颤振分析中的应用[J]. 航空动力学报, 2014, 29(8): 1846-1854.

文章导航

/