基于漏斗试样的C250钢高温扭转低周疲劳行为
收稿日期: 2014-12-26
修回日期: 2015-02-05
网络出版日期: 2015-02-11
基金资助
国家自然科学基金(11472228);四川省青年科技创新研究团队(2013TD0004)
Torsional low-cycle fatigue behavior of C250 steel using funnel specimens at elevated temperature
Received date: 2014-12-26
Revised date: 2015-02-05
Online published: 2015-02-11
Supported by
National Natural Science Foundation of China(11472228);Sichuan Youth Science and Technology Innovation Team(2013TD0004)
C250钢的扭转疲劳破坏是其主要失效形式之一。为了获得航空材料C250钢的扭转疲劳特性,并消除等直圆棒试样在扭转试验中产生的弊端,依据漏斗试样完成了C250钢在3种高温(150、200、350℃)环境下的扭转低周疲劳试验,获得了在扭转低周疲劳下的扭矩-名义扭转角曲线。基于试验结果,利用FAT方法分析得到了C250钢在3种高温环境下的材料循环本构关系,利用该循环本构关系对漏斗试样进行三维扭转有限元分析,获得漏斗根部剪切应力与扭矩之间的转换公式及漏斗根部剪切应变与名义扭转角之间的转换公式。基于以上试验与分析方法,得到了材料的剪切应变幅-倍循环次数曲线、剪切应力幅-循环分数曲线以及剪切应力-剪切应变的稳定滞回线,发现材料呈现出循环软化特性,并基于Manson-Coffin模型对材料寿命进行了分析。
赵兴华 , 蔡力勋 , 包陈 , 江志华 . 基于漏斗试样的C250钢高温扭转低周疲劳行为[J]. 航空学报, 2016 , 37(2) : 617 -625 . DOI: 10.7527/S1000-6893.2015.0042
Torsional fatigue rupture is one of C250 steel's main failure forms. In order to obtain torsional fatigue characteristics of C250 steel and eliminate the disadvantages of straight rod specimen, a series of torsional fatigue tests on C250 steel at three different elevated temperatures, 150, 200, 350℃ using funnel specimens has been carried out, and the curves of nominal torque-nominal torsional angle for C250 steel at each temperature are given. Based on the test results and finite-element-analysis aided testing(FAT) method, the effective cyclic constitutive relationships of C250 steel at those temperatures have been obtained. By using these effective cyclic constitutive relationships, 3D finite element analyses of funnel specimen under torsion are used to reveal the transforming relationship between the torque and shear stress at the root of funnel specimen, as well as the relationship between the nominal torsional angle and shear strain at the root of funnel specimen. On the basis of those test and analyzing methods, the curves of shear stress-times cycles、shear strain amplitude-cyclic fraction and stable hysteresis loop of shear stress-shear strain have been obtained. The material shows cyclic softening by the analysis of the low-cycle fatigue behavior, and the typical Manson-Coffin model is employed to predict the torsional fatigue life of C250 steel at three different elevated temperatures.
[1] DAVOLI P, BERNASCONI A, FILIPPINI M, et al. Independence of the torsional fatigue limit upon a mean shear stress[J]. International Journal of Fatigue, 2003, 25(6):471-480.
[2] 包陈, 蔡力勋, 钟斌. 两种合金钢的高温扭转疲劳性能[J]. 材料研究学报, 2007, 21(增刊):2-5. BAO C, CAI L X, ZHONG B. Torsional fatigue properties of two alloy steels at elevated temperature[J]. Chinese Journal of Materials Research, 2007, 21(Suppl.):2-5(in Chinese).
[3] 金磊, 夏慧琴. 扭转疲劳试验的探索性研究[J]. 材料工程, 1997(6):34-35. JIN L, XIA H Q. Eploring research on torsional fatigue properties in stainless steel, aluminum alloy and structural steel[J]. Journal of Materials Engineering, 1997(6):34-35(in Chinese).
[4] 钟斌, 何玉怀, 苏彬. 1Cr11Ni2W2MoV和16Ni3CrMoE两种钢的高温扭转疲劳性能研究[J]. 机械强度, 2004, 26(增刊):169-171. ZHONG B, HE Y H, SU B. High temperature torque fatigue properties of 1Cr11Ni2W2MoV and 16Ni3CrMoE[J]. Journal of Mechanical Strength, 2004, 26(S):169-171(in Chinese).
[5] 杨晓光, 黄佳, 王井科, 等. 定向凝固镍基高温合金缺口低循环疲劳性能及寿命预测[J]. 航空学报, 2013, 34(7):1596-1604. YANG X G, HUANG J, WANG J K, et al. Properties and life prediction of low cycle fatigue behavior on notched ds ni-based superalloy[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1596-1604(in Chinese).
[6] 丁智平, 曾军, 陈吉平. 镍基单晶合金多轴非对称循环加载应力弱化损伤与低周疲劳研究[J]. 航空学报, 2013, 34(12):2768-2776. DING Z P, ZENG J, CHEN J P. Study on stress-weakening damage and low cycle fatigue of Ni-based single crystal superalloy under multiaxial asymmetric loading[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2768-2776(in Chinese).
[7] 赵廷仕, 刘敦康, 纪惠君. 35钢低周扭转应变疲劳的研究[J]. 金属学报, 1987, 23(2):156-157. ZHAO T S, LIU D K, JI H J. Low cycle fatigue of steel 35 under torsional strain[J]. Acta Metallurgica Sinica, 1987, 23(2):156-157(in Chinese).
[8] 孙永健, 程琴, 唐雪艳. 变工况下汽轮机转子热应力分析及低周疲劳寿命计算[J]. 机械工程学报, 2013, 49(2):28-36. SUN Y J, CHENG Q, TANG X Y. Analysis of thermal stress and calculation of low-cycle fatigue life for a steam turbine under variable operating conditions[J]. Journal of Mechanic Engineering, 2013, 49(2):28-36(in Chinese).
[9] BROWN M W, MILLER K J. High temperature low cycle biaxial fatigue of two steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 1979, 1(2):217-229.
[10] DAUNYS M, ESNAVⅡUS R. Investigation of low cycle asymmetric torsion[J]. Mechanika, 2010, 90:135.
[11] 杨丽红, 何蕴增, 吴国辉, 等. 基于扭转试验的大变形本构关系分析[J]. 哈尔滨工程大学学报, 2007, 27(6):816-820. YANG L H, HE Y Z, WU G H, et al. Analysis of large strain constitutive relationship based on torsion test[J]. Journal of Harbin Engineering University, 2007, 27(6):816-820(in Chinese).
[12] 杨丽红. 基于实心圆轴扭转实验的大变形本构关系研究[D]. 哈尔滨:哈尔滨工程大学, 2005:22-35. YANG L H. Research on large deformation constitutive relationship based on cylindrical shaft torsion test[D]. Harbin:Harbin Engineering University, 2005:22-35(in Chinese).
[13] 何蕴增, 邹广平. 实心圆轴扭转测定本构关系的概念和方法[J]. 实验力学, 2003, 18(3):426-432. HE Y Z, ZOU G P. The concept and method for determining the constitutive law of materials by torsion test with cylindrical specimens[J]. Journal of Experimental Mechanics, 2003, 18(3):426-432(in Chinese).
[14] 何蕴增, 邹广平. 实心圆试件扭转试验确定大应变本构关系[J]. 力学学报, 2001, 33(6):828-833. HE Y Z, ZOU G P. Determine finite-strain stress-strain relationship by torsion test with cylindrical specimens[J]. Acta Mechanica Sinica, 2001, 33(6):828-833(in Chinese).
[15] DECKER R F, FLOREEN S. Maraging steels-the first 30 years[J]. Maraging Steels:Recent Developments and Applications, 1988:1-38.
[16] 姜越, 尹钟大, 朱景川, 等. 超高强度马氏体时效钢的发展[J]. 特殊钢, 2004, 25(2):1-5. JIANG Y, YIN Z D, ZHU J C, et al. Development of ultra-high strength maraging steel[J]. Special Steel, 2004, 25(2):1-5(in Chinese).
[17] 姚迪, 蔡力勋, 包陈, 等. 基于试验与有限元耦合技术的延性材料全程单轴本构关系获取方法[J]. 固体力学学报, 2014, 35(3):226-240. YAO D, CAI L X, BAO C, et al. Determination of stress-strain curve of ductile materials by testing and finite element coupling method[J]. Chinese Journal of Solid Mechanics, 2014, 35(3):226-240(in Chinese).
[18] 陈辉, 蔡力勋, 姚迪, 等. 基于小尺寸材料试验与有限元分析的耦合方法获取材料力学性能[J]. 机械强度, 2014, 36(2):187-192. CHEN H, CAI L X, YAO D, et al. Obtaining material mechanical properties by coupling method based on tests of small size specimens and finite element analysis[J]. Journal of Mechanical Strength, 2014, 36(2):187-192(in Chinese).
[19] MCCLAFLIN D, FATEMI A. Torsional deformation and fatigue of hardened steel including mean stress and stress gradient effects[J]. International Journal of Fatigue, 2004, 26(7):773-784.
[20] SHAMSAEI N, FATEMI A. Deformation and fatigue behaviors of case-hardened steels in torsion:experiments and predictions[J]. International Journal of Fatigue, 2009, 31(8):1386-1396.
[21] WANG X G, GAO Z L, QIU B X, et al. Multi-axial fatigue of 2024-T4 aluminum alloy[J]. Chinese Journal of Mechanical Engineering, 2011, 24(2):195-201.
[22] JAHED H, VARVANI-FARAHANI A. Upper and lower fatigue life limits model using energy-based fatigue properties[J]. International Journal of Fatigue, 2006, 28(5):467-473.
/
〈 | 〉 |