流体力学与飞行力学

一种预测平板尾迹噪声的时域无网格方法

  • 洪志亮 ,
  • 高鸽 ,
  • 景晓东 ,
  • 孙晓峰
展开
  • 1. 北京航空航天大学能源与动力工程学院, 北京 100191;
    2. 沈阳黎明航空发动机(集团)有限责任公司技术中心, 沈阳 110043
洪志亮,男,博士研究生。主要研究方向:流体与声学工程。Tel:024-24383347,E-mail:hongzl@buaa.edu.cn;高鸽,男,研究员。主要研究方向:发动机设计。Tel:024-24382148,E-mail:gegliming@sina.com;景晓东,男,教授,博士生导师。主要研究方向:气动声学。Tel:010-82338085,E-mail:jingxd@buaa.edu.cn;孙晓峰,男,教授,博士生导师。主要研究方向:气弹稳定性与气动声学。Tel:010-82317408,E-mail:sunxf@buaa.edu.cn

收稿日期: 2014-11-27

  修回日期: 2015-01-07

  网络出版日期: 2015-01-27

基金资助

国家自然科学基金(51306006,51076006);国家"973"计划(2012CB720200)

A grid-less time domain method for plate trailing edge noise prediction

  • HONG Zhiliang ,
  • GAO Ge ,
  • JING Xiaodong ,
  • SUN Xiaofeng
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
    2. Technology Center, Shenyang Liming Aero-Engine Group Co. LTD., Shenyang 110043, China

Received date: 2014-11-27

  Revised date: 2015-01-07

  Online published: 2015-01-27

Supported by

National Natural Science Foundation of China (51306006, 51076006);National Basic Research Program of China (2012CB720200)

摘要

基于离散涡方法和涡声理论建立了一种预测二维平板尾迹发声的时域无网格方法。该方法应用解耦方式完成声场计算,首先使用离散涡方法计算了均匀来流作用下的平板尾迹流场,得到了流场中点涡的涡量、位置和速度等关键参数,然后基于涡声理论建立了自由空间中点涡发声模型,并引入了时域边界元方法来模拟平板表面对声场的散射作用,计算得到了平板尾迹涡发声的偶极子声场分布和指向性等关键特征。通过对上下表面涡以及平板散射对声场贡献的深入分析表明,从平板尾缘上下角点脱落并卷起的涡团均为偶极子源,平板的散射作用使得声场在一定程度上得到加强,并且使声场具有极大值方向垂直于平板表面的偶极子指向性特征。所建立的无网格方法计算快速,能同时获得流场和声场分布的关键特征,可提升对气动噪声产生机理的基本认识,同时还为尾迹噪声的理论研究提供了一种具有工程应用价值的可靠计算方法。

本文引用格式

洪志亮 , 高鸽 , 景晓东 , 孙晓峰 . 一种预测平板尾迹噪声的时域无网格方法[J]. 航空学报, 2015 , 36(11) : 3501 -3514 . DOI: 10.7527/S1000-6893.2015.0008

Abstract

A grid-less time domain method for predicting trailing edge noise radiated from a two-dimensional flat plate is established in the present study, which is based on the discrete vortex method and vortex sound theory. The trailing edge noise is calculated in a decoupling manner. Firstly, the shear layer shed from the plate trailing edge is simulated through a discrete vortex method, and the key parameters of the vortices are obtained, including the strengths, positions and velocities. Then, a sound radiation model of the vortices in the free space is deduced in the frame of the vortex sound theory. Besides, to account for the influence of the plate surface, a time domain boundary element method is introduced. After that, the sound pressure distribution and the far field directivity radiated from the trailing edge vortices are analyzed. The present results indicate that the vortex clouds rolled up by point vortices are typically dipole sources, and the scattering effect from the plate surface can not only enhance the sound pressure level but also lead the maximum sound pressure to propagate in the vertical direction to the surface. This grid-less model depicted here simulates the flow and sound field simultaneously, which can help to improve the basic understanding on the trailing edge noise radiation and provide a reliable method for noise investigation with engineering importance as well.

参考文献

[1] Lockard D P, Lilley G M. The airframe noise reduction challenge, NASA/TM-2004-213013[R]. Washington, D.C.:NASA, 2004.
[2] Lighthill M J. On sound generated aerodynamically. I. General theory[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1952, 211(1107):564-587.
[3] Curle N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1955, 231(1187):505-514.
[4] Lele S K. Computational aeroacoustics:A review, AIAA-1997-0018[R]. Reston:AIAA, 1997.
[5] Moin P, Mahesh K. Direct numerical simulation:A tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30(1):539-578.
[6] Howe M S. Theory of vortex sound[M]. Cambridge:Cambridge University Press, 2003.
[7] Escobar M. Finite element simulation of flow-induced noise using Lighthill's acoustic analogy[D]. Nuremberg:University of Erlangen-Nuremberg, 2007.
[8] Cheong C, Joseph P, Park Y, et al. Computation of aeolian tone from a circular cylinder using source models[J]. Applied Acoustics, 2008, 69(2):110-126.
[9] Liow Y S K, Tan B T, Thompson M C, et al. Sound generated in laminar flow past a two-dimensional rectangular cylinder[J]. Journal of Sound and Vibration, 2006, 295(1):407-427.
[10] Inoue O, Hatakeyama N. Sound generation by a two-dimensional circular cylinder in a uniform flow[J]. Journal of Fluid Mechanics, 2002, 471:285-314.
[11] Tsutahara M, Kondo T, Mochizuki K. Direct simulations of acoustic waves by finite volume Lattice Boltzmann method, AIAA-2006-2570[R]. Reston:AIAA, 2006.
[12] Le Garrec T, Gloerfelt X, Corre C. Direct noise computation of trailing edge noise at high Reynolds numbers, AIAA-2008-2917[R]. Reston:AIAA, 2008.
[13] Dai X, Jing X, Sun X. Vortex Shedding and its nonlinear acoustic effect occurring at a slit[J]. AIAA Journal, 2011, 49(12):2684-2694.
[14] Jing X, Sun X. Discrete vortex simulation on the acoustic non-linearity of an orifice[J]. AIAA Journal, 2000, 38(9):1565-1572.
[15] Hong Z, Dai X, Zhou N, et al. Suppression of Helmholtz resonance using inside acoustic liner[J]. Journal of Sound and Vibration, 2014, 333(16):3585-3597.
[16] Langthjem M A, Nakano M. A numerical simulation of the hole-tone feedback cycle based on an axisymmetric discrete vortex method and Curle's equation[J]. Journal of Sound and Vibration, 2005, 288(1):133-176.
[17] Guo Y P. Application of the Ffowcs Williams/Hawkings equation to two-dimensional problems[J]. Journal of Fluid Mechanics, 2000, 403:201-221.
[18] Powell A. Theory of vortex sound[J]. The journal of the Acoustical Society of America, 1964, 36(1):177-195.
[19] Howe M S. Trailing edge noise at low Mach numbers[J]. Journal of Sound and Vibration, 1999, 225(2):211-238.
[20] Clements R R. An inviscid model of two-dimensional vortex shedding[J]. Journal of Fluid Mechanics, 1973, 57(02):321-336.
[21] Kiya M, Sasaki K, Arie M. Discrete-vortex simulation of a turbulent separation bubble[J]. Journal of Fluid Mechanics, 1982, 120:219-244.
[22] Jing X, Sun X. Sound-excited flow and acoustic nonlinearity at an orifice[J]. Physics of Fluids (1994-present), 2002, 14(1):268-276.
[23] Mansur W J. A time-stepping technique to solve wave propagation problems using the boundary element method[D]. Southampton:University of Southampton, 1983.
[24] Mitchell B E, Lele S K, Moin P. Direct computation of the sound from a compressible co-rotating vortex pair[J]. Journal of Fluid Mechanics, 1995, 285:181-202.

文章导航

/