流体力学与飞行力学

对转压气机轮缘端壁抽吸流场特性数值分析及实验研究

  • 史磊 ,
  • 刘波 ,
  • 巫骁雄 ,
  • 那振喆 ,
  • 张鹏
展开
  • 西北工业大学 动力与能源学院, 西安 710072
史磊 男, 博士研究生。主要研究方向: 轴流叶轮机械流动控制技术。 Tel: 029-88488029 E-mail: star704nwpu@gmail.com;巫骁雄 男, 硕士研究生。主要研究方向: 轴流叶轮机械气动热力学。 Tel: 029-88488029 E-mail: xxwu1990@126.com;那振喆 男, 博士研究生。主要研究方向: 轴流叶轮机械气动热力学。 Tel: 029-88488029 E-mail: na_wuli@163.com;张鹏 男, 博士研究生。主要研究方向: 轴流叶轮机械气动热力学。 Tel: 029-88488029 E-mail: zhengpeng257@163.com

收稿日期: 2014-09-29

  修回日期: 2014-12-09

  网络出版日期: 2015-01-27

基金资助

国家自然科学基金 (51236006)

Numerical analysis and experimental research of shroud casing boundary layer removal on a counter-rotating compressor

  • SHI Lei ,
  • LIU Bo ,
  • WU Xiaoxiong ,
  • NA Zhenzhe ,
  • ZHANG Peng
Expand
  • School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2014-09-29

  Revised date: 2014-12-09

  Online published: 2015-01-27

Supported by

National Natural Science Foundation of China (51236006)

摘要

以某双排对转轴流压气机为研究对象,通过区域缩放法开展非定常数值研究。数值结果显示近喘点附近转子2(R2)叶尖泄漏流动造成了高叶展范围内的流动阻塞以及高熵流动区域的产生,下游出口导流叶片承受着非常不利的来流条件。通过在转子叶尖近高熵流动核心区轮缘端壁处设置抽吸孔进行低能流体的移除能够明显改善叶尖区域的流场品质,提高压气机工作特性。根据数值研究结果,重新设计并加工了用于端壁抽吸的轮缘机匣,搭建了附面层抽吸系统及测控系统。在80%设计转速下,针对转子2叶尖进行端壁附面层抽吸,相对抽吸流量为1.0%。实验结果显示,端壁附面层抽吸应工作在低于原始特性最高效率点所在流量的小流量范围内。在此流量范围内端壁抽吸会大幅提高工作效率,改善压气机负荷水平。而在高于此流量的范围内,端壁附面层抽吸会带来负面影响。

本文引用格式

史磊 , 刘波 , 巫骁雄 , 那振喆 , 张鹏 . 对转压气机轮缘端壁抽吸流场特性数值分析及实验研究[J]. 航空学报, 2015 , 36(9) : 2968 -2980 . DOI: 10.7527/S1000-6893.2014.0340

Abstract

Domain scaling method is used in the unsteady numerical simulation of a dual-stage axial counter-rotating compressor. Numerical results show that tip leakage vortex over Rotor 2(R2) is the main source of flow blockage in high spanwise and high entropy zone in the tip region, which makes outlet guide vanes in the downstream endure a serious flow condition. Shroud casing boundary layer removal in the high entropy core over rotor tip can make the flow field better and improve the characteristic of compressor. Based on the results of numerical calculation, we redesign and machine the aspirated shroud casing, meanwhile set up boundary layer suction and control system. Experiment is carried out at 1.0% suction rate through R2 tip region shroud casing at 80% corrected rotating speed. Results indicate that boundary layer suction through shroud casing should be used under the massflow with the highest efficiency in original characteristic. Boundary layer suction can better the efficiency and improve the loading level in this flow area. Else it has a negative influence.

参考文献

[1] Chen M Z, Liu B J. Progress and fundamental study and engineering development for compressor in China[J]. Aeroengine, 2007, 33(1): 1-9 (in Chinese). 陈懋章, 刘宝杰. 中国压气机基础研究及工程研制的一些进展[J]. 航空发动机, 2007, 33(1): 1-9.
[2] Broichhausen K D, Ziegler K U. Supersonic and transonic compressor: Past, status and technology trends, GT2005-69067[R]. New York: ASME, 2005.
[3] Puterbaugh S L, Car D, Bailie S T. Turbomachinery fluid mechanics and control, AFRL-RZ-WP-TR-2010-2026[R].OH: Compressor Aero Research Laboratory Fan and Compressor Branch, Wright-Patterson Air Force Base,2010.
[4] Zhang H L. Investigation on application of dihedral/swap blade and boundary layer suction to control vortex configurations in compressor cascade[D]. Harbin: Harbin Institute of Technology, 2007 (in Chinese). 张华良. 采用叶片弯/掠及附面层抽吸控制扩压叶栅内涡结构的研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
[5] Chen W, Li Y F. Discussion on sustainable energy development in China[J]. Energy Technology and Economics, 2010, 22(5): 17-23 (in Chinese). 陈武, 李云峰. 我国能源可持续发展的探讨[J]. 能源技术经济, 2010, 22(5): 17-23.
[6] Mercan B, Dog^an E, Ostovan Y, et al. Experimental investigation of the effects of waveform tip injection in a low pressure turbine cascade, GT2012-69316[R]. New York: ASME, 2012.
[7] Li J C. Stability enhancement technology of tip air injection in axial flow compressor-mechanism and intelligent control[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2012 (in Chinese). 李继超. 轴流压气机叶顶喷气扩稳技术-机理及智能调控[D]. 北京: 中国科学院工程热物理研究所, 2012.
[8] Niu M S, Zang S S. Experimental and numerical investigation of tip injection on tip clearance flow in an axial turbine cascade[J]. Experimental Thermal and Fluid Science, 2011, 35(6): 1214-1222.
[9] Zhao X H, Li Y H, Wu Y, et al. Numerical investigation of flow separation control on a highly loaded compressor cascade by plasma aerodynamic actuation[J]. Chinese Journal of Aeronautics, 2012, 25(3): 349-360.
[10] Saddoughi S, Bennett G, Boespflug M, et al. Experimental investigation of tip clearance flow in a transonic compressor with and without plasma actuators[J]. Journal of Turbomachinery, 2015, 137(4): 041008-1-10.
[11] Li Y H, Wu Y. Progress of research on plasma flow control technology[J]. Journal of Air Force Engineering University: Natural Science Edition, 2012,13(3): 1-5 (in Chinese). 李应红, 吴云. 等离子体流动控制技术研究进展[J]. 空军工程大学学报: 自然科学版, 2012, 13(3): 1-5.
[12] Wang D L, Shao F Y, Guo H Y, et al. Study of tip winglets on leakage flow in a transonic turbine stage[J]. Journal of Propulsion Technology, 2014, 35(3): 341-346 (in Chinese). 王大磊, 邵伏永, 郭昊雁, 等. 翼梢小翼对涡轮间隙泄漏流动影响的数值研究[J]. 推进技术, 2014, 35(3): 341-346.
[13] Coull J D, Atkins N R, Hodson H P. Winglets for improved aerothermal performance of high pressure turbines[J]. Journal of Turbomachinery, 2014, 136(9): 091007-1-11.
[14] Heyes F J G, Hodson H P, Dailey G M. The effect of blade tip geometry on the tip leakage flow in axial turbine cascades[J]. Journal of Turbomachinery, 1992, 114(3): 643-651.
[15] Zhang J, Ma H W. Effects of suction side squealer tip on the performance of a compressor cascade[J]. Gas Turbine Experiment and Research, 2014, 27(3): 6-11 (in Chinese). 张军, 马宏伟. 叶顶吸力面肋条对压气机叶栅性能的影响[J]. 燃气涡轮试验与研究, 2014, 27(3): 6-11.
[16] Gao J, Zheng Q. Effect of squealer tip geometry on rotor blade aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 218-226 (in Chinese). 高杰, 郑群. 叶顶凹槽形态对动叶气动性能的影响[J]. 航空学报, 2013, 34(2): 218-226.
[17] Jung S P, Sang H L, Jae S K. Measurement of blade tip heat transfer and leakage flow in a turbine cascade with a multi-cavity squealer tip, TBTS2013-2072[R]. New York:ASME, 2013.
[18] Li W, Jiang H M, Zhang Q. Squealer tip leakage flow characteristics in transonic condition[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(4): 042601-1-7.
[19] Cheng R H. Development of design technology for axial compressor[J]. Gas Turbine Experiment and Research, 2004, 17(2): 1-7 (in Chinese). 程荣辉. 轴流压气机设计技术的发展[J]. 燃气涡轮试验与研究, 2004, 17(2): 1-7.
[20] Zhao B, Li S B, Zhou S, et al. Research progress on the aircraft engine air system bleeding[J]. Advances in Aeronautical Science and Engineering, 2012, 3(4): 476-485 (in Chinese). 赵斌, 李绍斌, 周盛, 等. 航空发动机空气系统气源引气的研究进展[J]. 航空工程进展, 2012, 3(4): 476-485.
[21] Kerrebrock J, Epstein A, Adamczyk J, et al. Research and development on aspirated compressors, AFRL-SR-AR-TR-04-0285[R]. Cambridge, Arlington, CA: Air Force Office of Scientific Research, 2003.
[22] Gummer V, Goller M, Swoboda M. Numerical investigation of end wall boundary layer removal on highly loaded axial compressor blade rows[J]. Journal of Turbomachiner, 2008, 130: 011015-1-9.
[23] Wang Y G, Niu N, Ren S Y, et al. Comparison of BLS on blade surface & end-wall for a transonic compressor rotor[J]. Journal of Engineering Thermophysics, 2011, 32 (11): 1843-1846 (in Chinese). 王掩刚, 牛楠, 任思源, 等. 跨音速压气机转子叶表和端壁抽吸对比研究[J]. 工程热物理学报, 2011, 32(11): 1843-1846.
[24] Liu B, Chen Y Y, Xiang X R, et al. Experimental and numerical investigation of dual stage counter-rotating compressor[J]. Journal of Propulsion Technology, 2008, 29(4): 454-457 (in Chinese). 刘波, 陈云永, 项效镕, 等. 对转压气机数值模拟及实验研究[J]. 推进技术, 2008, 29(4): 454-457.
[25] Liu B, Cao Z Y, Wei W, et al. Effects of boundary layer suction on counter-rotating compressor in multistage environment[J]. Journal of Aerospace Power, 2013, 28(4): 885-892 (in Chinese). 刘波, 曹志远, 魏巍, 等. 级环境下附面层抽吸对对转压气机性能的影响[J]. 航空动力学报, 2013, 28(4): 885-892.
[26] Gao L M, Miao F, Li R Y, et al. Effect of rotor/rotor interactions on blades unsteady loading[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1874-1881 (in Chinese). 高丽敏, 苗芳, 李瑞宇, 等. 动/动干涉效应对叶片非定常负荷的影响[J]. 航空学报, 2014, 35(7): 1874-1881.
[27] Liu B, Cao Z Y, Shi L, et al. The application of non-axisymmetric endwall contouring and blade profile optimization in a counter-rotating compressor[C]//The 21st International Symposium on Air Breathing Engines (ISABE). Seoul: Korean Society for Fluid Machinary, Korean Society Propulsion Engines, 2013.
[28] Shi L, Liu B, Wang L, et al. Redesign of counter-rotating compressor with boundary layer suction[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3254-3263 (in Chinese). 史磊, 刘波, 王雷, 等. 结合吸附技术的对转压气机改型设计研究[J]. 航空学报, 2014, 35(12): 3254-3263.
[29] Inoue M, Kuroumaru M. Structure of tip clearance in a axial isolated compressor rotor[J]. ASME Journal of Turbomachinery, 1989, 111: 250-256.
[30] Liu B, Shi L, Na Z Z, et al. A structure on shroud casing in compressor for boundary layer suction: China, CN 103939395A[P]. 2014-07-23 (in Chinese). 刘波, 史磊, 那振喆, 等. 一种用于端壁附面层抽吸的压气机轮缘机匣结构: 中国, CN 103939395A[P]. 2014-07-23.

文章导航

/