高超声速飞行器表面温度分布与气动热耦合数值研究
收稿日期: 2014-07-04
修回日期: 2014-10-13
网络出版日期: 2015-01-24
基金资助
国家自然科学基金 (91216204)
Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles
Received date: 2014-07-04
Revised date: 2014-10-13
Online published: 2015-01-24
Supported by
National Natural Science Foundation of China (91216204)
针对高超声速飞行器热防护设计中的高温气体非平衡效应问题和气动热环境精确预测问题,基于流场的非平衡Navier-Stokes方程、表面的能量守恒方程和内部的热传导方程,考虑流场的非平衡效应、表面的热辐射效应、催化效应和烧蚀效应以及热防护层内部的热传导效应,建立了初步的表面温度分布与气动热的耦合计算方法,完善了高超声速飞行器气动物理流场计算软件(AEROPH_Flow)。在表面材料为碳-碳(C-C)条件下,对飞行高度为65 km和飞行速度为8,10 km/s的半球以及飞行高度为50 km和飞行速度为8 km/s的球锥模型,开展了表面温度分布与气动热的耦合计算,验证了计算方法和计算软件,分析了表面温度分布对气动热环境的影响。研究结果表明:表面温度分布对气动热的计算结果有较大影响,在气动热环境的预测中,不仅要考虑热化学非平衡效应和表面催化效应的影响,还要考虑表面温度分布的影响,最好是采用表面温度分布与气动热耦合计算的方法,以减小表面温度分布对气动热计算结果的影响。为此,需要发展完善非平衡流场/表面催化和烧蚀/热传导温度场(气/表/固)的计算模型、耦合求解技术和计算软件,实现对高超声速飞行器的真实飞行条件下高温气体非平衡效应和气动热环境的精确模拟。
董维中 , 高铁锁 , 丁明松 , 江涛 , 刘庆宗 . 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报, 2015 , 36(1) : 311 -324 . DOI: 10.7527/S1000-6893.2014.0241
In order to predict precisely aeroheating and effects of high-temperature non-equilibrium gas during design the thermal protection system of hypersonic vehicles, the simulation methods of coupled surface temperature and heat transfer rate are developed based on the Navier-Stokes equations of non-equilibrium flow fields, the energy conservation equation at the surface with radiation, catalytic action and ablation, and the unsteady heat conduction equations of heat-shield, and the computational code AEROPH_Flow is perfected ,which are developed by us for numerically simulating the flow over hypersonic vehicles and predicting the aero-physical characteristics . The numerical simulation results are presented, including a semi-sphere geometries at the altitude of 65 km with the free stream velocity of 8 km/s and 10 km/s, a sphere-cone geometries at the altitude of 50 km with 8 km/s, and the polycrystalline graphite is selected as ablative material on the surface. The distributions of surface temperature and heat transfer rate are obtained and the analysis is done for the influence of the surface temperature distribution on heat transfer rate. The results show that the surface temperature distribution has a more important influence on the computational results of heat transfer rate, the factors considered in the high-precision prediction of aero-thermal environment are not only thermo-chemical non-equilibrium effect and surface catalytic effect, but also the surface temperature distributions, so the best method for high-precision prediction of aero-thermal environment is the coupling of surface temperature and heat transfer rate, and it is essential to develop perfect physical models, solving methods and numerical simulation codes of coupled non-equilibrium flow field, surface catalytic action and ablation, and heat conduction of heat-shield for the high-precision prediction of aero-thermal environment of hypersonic vehicles under the real flight condition.
[1] Cander G V, Maccormack R W. The computation of hypersonic ionized flows in chemical and thermal nonequilibrium, AIAA-1988-0511[R]. Reston: AIAA, 1988.
[2] Gupta R N, Yos J M, Thompson, et al. A review of reaction rates and thermodynamic and transport properties for 11-species air model for chemical and thermal nonequilibrium calculation to 30 000 K, NASA-TM-101528[R]. Washington, D.C.: NASA, 1989.
[3] Park C. Nonequilibrium hypersonic aerothermodynamics [M].New York: John Wiley &Sons, 1990: 145-218.
[4] Netterfield M P. Validation of a Navier-Stokes code for thermochemical nonequilibrium flows, AIAA-1992-2878[R]. Reston: AIAA, 1992.
[5] Muylaert J, Walpot L, Hauser J, et al. Standard model testing in the European high facility F4 and extrapolation to flight, AIAA-1992-3905[R]. Reston: AIAA, 1992.
[6] Keenan J A , Candler G V. Simulation of ablation in earth atmospheric entry, AIAA-1993-2789[R]. Reston: AIAA, 1993.
[7] Keenan J A, Candler G V. Simulation of graphite sublimation and oxidation under re-entry conditions, AIAA-1994-2083[R]. Reston: AIAA, 1994.
[8] Hassan B, Kuntz D W, Potter D L, et al. Coupled fluid/thermal prediction of ablating hypersonic vehicles, AIAA-1998-0168[R]. Reston: AIAA, 1998.
[9] Edquist K T. Afterbody heating predictions for a Mars science laboratory entry vehicle, AIAA-2005-4817[R]. Reston: AIAA, 2005.
[10] Hash D, Olejniczak J, Wright M J, et al. FIRE II calculations for hypersonic nonequilibrium aerothermodynamics code verification: DPLR, LAURA, and US3D, AIAA-2007-0605[R]. Reston: AIAA, 2007.
[11] Subrahmanyam P, Papadopoulos P. Development of a parallel CFD solver SPARTA for aerothermodynamic analysis, AIAA-2007-2976[R]. Reston: AIAA, 2007.
[12] Pezzella G, Votta R . Finite rate chemistry effects on the high altitude aerodynamics of an Apollo-shaped reentry capsule, AIAA-2009-7306[R]. Reston: AIAA, 2009.
[13] Votta R, Schettino A, Ranuzzi G, et al. Hypersonic low-density aerothermodynamics of Orion-like exploration vehicle[J]. Journal of Spacecraft and Rockets, 2009, 46(4): 781-787.
[14] Surzhikov S. The effect of non-equilibrium dissociation on radiative heating of entering space vehicle, AIAA-2012-1146[R]. Reston: AIAA, 2012.
[15] Chen Y K, Gokcen T. Effect of non-equilibrium surface thermochemistry in simulation of carbon based ablators[J]. Journal of Spacecraft and Rockets, 2013, 50(5): 917-926.
[16] Dong W Z. Numerical simulation and analysis of thermo-chemical non-equilibrium effects at hypersonic flows[D].Beijing: Beijing University of Aeronautics and Astronautics, 1996 (in Chinese). 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京: 北京航空航天大学, 1996.
[17] Dong W Z, Le J L, Liu W X. The determination of catalytic rate constant of surface materials of testing model in the shock tube[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3): 1-6 (in Chinese). 董维中, 乐嘉陵, 刘伟雄. 驻点壁面催化速率常数确定的研究[J]. 流体力学实验与测量, 2000, 14(3): 1-6.
[18] Dong W Z, Gao T S, Zhang Q Y. Numerical simulation of 3-D graphite ablation flow fields over a hypersonic reentry blunt body[J]. Acta Aerodynamica Sinica, 2001, 19(4): 388-394 (in Chinese). 董维中, 高铁锁, 张巧云. 高超声速三维碳-碳烧蚀流场的数值研究[J]. 空气动力学学报, 2001, 19(4): 388-394.
[19] Dong W Z. Thermal and chemical model effect on the calculation of aerodynamic parameter for hypersonic reentry blunt body[J]. Acta Aerodynamica Sinica, 2001, 19(2): 197-202 (in Chinese). 董维中. 气体模型对高超声速再入钝体气动参数计算影响的研究[J]. 空气动力学学报, 2001, 19(2): 197-202.
[20] Dong W Z, Le J L, Gao T S. Numerical analysis for correlation of standard model testing in high enthalpy facility and flight test[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(2): 1-8 (in Chinese). 董维中, 乐嘉陵, 高铁锁. 钝体标模高焓风洞试验和飞行试验相关性的数值分析[J]. 流体力学实验与测量, 2002, 16(2): 1-8.
[21] Dong W Z, Gao T S, Ding M S. Numerical studies of the multiple vibrational temperature model in hypersonic non-equilibrium flows[J]. Acta Aerodynamica Sinica, 2007, 25(1): 1-6 (in Chinese). 董维中, 高铁锁, 丁明松. 高超声速非平衡流场多个振动温度模型的数值研究[J]. 空气动力学学报, 2007, 25(1): 1-6.
[22] Dong W Z, Gao T S, Zhang Z C. Numerical analysis of thermal and chemical nonequilibrium testing flow-field around the reentry blunt body[J]. Acta Aerodynamica Sinica, 2008, 26(2): 163-166 (in Chinese). 董维中, 高铁锁, 张志成. 再入体实验模型热化学非平衡绕流流场的数值分析[J]. 空气动力学学报, 2008, 26(2): 163-166.
[23] Dong W Z, Gao T S, Ding M S, et al. Numerical analysis for the effect of Silicon based material ablation on the flow field around reentry blunt body[J]. Acta Aerodynamic Sinica, 2010, 28(6): 708-714 (in Chinese). 董维中, 高铁锁, 丁明松,等. 硅基材料烧蚀产物对再入体流场特性影响的数值计算[J]. 空气动力学学报, 2010, 28(6): 708-714.
[24] Li H Y. Numerical simulation and analysis of high temperature real gas effects at hypersonic aerothermodynamics[D]. Mianyang: China Aerodynamics Research and Development Center, 2007 (in Chinese). 李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳:中国空气动力研究与发展中心, 2007.
[25] Liu J, Liu W, Zeng M, et al. Numerical simulation of 3D hypersonic thermochemical nonequilibrium flow[J]. Acta Mechanica Sinica, 2003, 35(6): 730-735 (in Chinese). 柳军, 刘伟, 曾明, 等. 高超声速三维热化学非平衡流场的数值模拟[J]. 力学学报, 2003, 35(6): 730-735.
[26] Liu J. Experimental and numerical research on thermo- chemical nonequilibrium flow with radiation phenomenon [D]. Changsha: National University of Defense Technology, 2004 (in Chinese). 柳军. 热化学非平衡流及其辐射现象的实验和数值计算研究[D]. 长沙: 国防科学技术大学, 2004.
[27] Zeng M, Hang J, Lin Z B, et al. Numerical analysis of the effects of different thermo-chemical nonequilibrium models on hypersonic nozzle flow[J].Acta Aerodynamica Sinica, 2008, 24(3): 346-349 (in Chinese). 曾明, 杭建, 林贞彬, 等. 不同热化学非平衡模型对高超声速喷管流场影响的数值分析[J]. 空气动力学学报, 2008, 24(3): 346-349.
[28] Gao B, Hang J, Lin Z B, et al. The experiment exploration of catalyst effects on aerodynamic heat in real gas effects[J].Experiments and Measurements in Fluid Mechanics, 2004, 18(2): 55-58 (in Chinese). 高冰, 杭建, 林贞彬, 等. 高温真实气体效应中催化效应对气动热影响的实验探索[J]. 流体力学实验与测量, 2004, 18(2): 55-58.
[29] Fan J. Criteria on high-temperature gas effects around hypersonic vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 591-596 (in Chinese). 樊菁. 高超声速高温气体效应判据[J]. 力学学报, 2010, 42(4): 591-596.
[30] Ma H , Zhao L, Wang F M. Numerical simulations of hypersonic three-dimensional chemical nonequilibrium flows[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(2): 168-172 (in Chinese). 马辉, 赵烈, 王发民. 高超声速三维化学非平衡流动的数值模拟[J]. 北京航空航天大学学报, 2004, 30(2): 168-172.
[31] Miao W B, Cheng X L, Ai B C. The influence of catalyze condition on thermal environment predicting[J]. Spacecraft Environment Engineering, 2009, 26(Sup.): 45-49 (in Chinese). 苗文博, 程晓丽, 艾邦成. 壁面催化条件对热环境预测的影响[J]. 航天器环境工程, 2009, 26(增刊): 45-49.
[32] Wang Y B, Wu Y Z, Liu X Q. Simulation of 3D hypersonic ionized and radiating flows in thermal and chemical nonequilibrium[J]. Chinese Journal of Computational Physics, 2008, 25(4): 421-426 (in Chinese). 王逸斌, 伍贻兆, 刘学强. 耦合辐射的三维热化学非平衡流数值模拟[J]. 计算物理, 2008, 25(4): 421-426.
[33] Zhang X H, Wu Y Z, Wang J F. Aero-heating numerical simulation of axisymmetric reentry vehicle body[J]. Chinese Journal of Applied Mechanics, 2012, 29(3): 284-290 (in Chinese). 张向洪, 伍贻兆, 王江峰. 轴对称再入舱模型气动热特性数值模拟研究[J]. 应用力学学报, 2012, 29(3): 284-290.
[34] Fan X J. On the mathematical simulation of non-equilibrium hypersonic around the flying vehicle[J]. Advances in Mechanics, 2004, 34(2): 224-236 (in Chinese). 范绪箕. 关于飞行器高超声速不平衡气体绕流的数值模拟[J]. 力学进展, 2004, 34(2): 224-236.
[35] Dong W Z, Ding M S, Gao T S, et al. The influence of thermo-chemical nonequilibrium model and surface temperature on heat transfer rate[J]. Acta Aerodynamica Sinica, 2013, 31(6): 692-698 (in Chinese). 董维中, 丁明松, 高铁锁, 等. 热化学非平衡模型和表面温度对气动热计算影响分析[J]. 空气动力学学报, 2013, 31(6): 692-698.
[36] Blottner F G. Prediction of electron density in the boundary layer on entry vehicle with ablation, N71-21113[R]. 1971.
[37] Tao W Q. Numerical heat transfer[M]. 2nd ed. Xi'an: Xi'an Jiao Tong University Press, 2008: 78-90 (in Chinese). 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2008: 78-90.
/
〈 | 〉 |