实验与数值模拟

跨流域高超声速绕流Boltzmann模型方程并行算法

  • 李志辉 ,
  • 吴俊林 ,
  • 蒋新宇 ,
  • 马强
展开
  • 1. 中国空气动力研究与发展中心 超高速空气动力研究所, 绵阳 621000;
    2. 国家计算流体力学实验室, 北京 100191
李志辉 男,博士,研究员,博士生导师。主要研究方向:稀薄气体动力学与计算流体力学。 Tel: 010-82330957 E-mail: zhli0097@x263.net;吴俊林 男,硕士,助理研究员。主要研究方向:稀薄气体动力学。 Tel: 0816-2465261 E-mail: wujunlin130@aliyun.com;蒋新宇 男,硕士,助理工程师。主要研究方向:稀薄气体动力学。 Tel: 0816-2465261 E-mail: janxy1987@163.com;马强 男,博士后。主要研究方向:气动热力学绕流环境结构耦合计算。 Tel: 010-82330957 E-mail: maqiang@lsec.cc.ac.cn

收稿日期: 2014-07-02

  修回日期: 2014-10-20

  网络出版日期: 2015-01-24

基金资助

国家"973"计划 (2014CB744100); 国家自然科学基金 (91016027, 91130018, 11325212); 国防基础科研项目 (51313030104)

A massively parallel algorithm for hypersonic covering various flow regimes to solve Boltzmann model equation

  • LI Zhihui ,
  • WU Junlin ,
  • JIANG Xinyu ,
  • MA Qiang
Expand
  • 1. Hypervelocity Aerodynamics Institute, China Aerodynamics Research & Development Center, Mianyang 621000, China;
    2. National Laboratory for Computational Fluid Dynamics, Beijing 100191, China

Received date: 2014-07-02

  Revised date: 2014-10-20

  Online published: 2015-01-24

Supported by

National Basic Research Program of China(2014CB744100); National Natural Science Foundation of China (91016027,91130018,11325212); National Defense Basic Research Program (51313030104)

摘要

通过对Boltzmann方程碰撞积分进行模型化处理,提出了统一描述各流域复杂高超声速流动输运现象的气体分子速度分布函数控制方程,使用离散速度坐标法对分布函数方程所依赖的速度空间离散降维,构造出直接求解分子速度分布函数的气体动理论耦合迭代数值格式,研制了复杂飞行器高超声速绕流气动热力学计算模型。基于对气体动理论数值计算方法内在并行性、变量依赖关系、数据通信与并行可扩展性的分析研究,使用区域分解并行化方法提出了新型的气体动理论数值算法并行方案;研究了数据的并行分布与并行执行特征,开展了大规模的并行化程序设计,构造了可稳定运行于成千上万CPU的高性能并行算法,用以模拟各流域复杂飞行器的高超声速绕流问题。以稀薄流到连续流环境下不同Knudsen数、不同马赫数的可重复使用类球锥卫星体及翼身组合复杂飞行器等气动力、热绕流问题为研究对象展开大规模并行计算,并进行算法验证,所得计算结果与理论分析、直接模拟蒙特卡罗方法(DSMC)的模拟值及有关实验数据吻合较好,揭示了飞行器跨流域高超声速下的复杂流动机理与变化规律,提供了一条能够可靠模拟高超声速飞行器跨流域气动力及热问题的统一的算法应用研究途径。

本文引用格式

李志辉 , 吴俊林 , 蒋新宇 , 马强 . 跨流域高超声速绕流Boltzmann模型方程并行算法[J]. 航空学报, 2015 , 36(1) : 201 -212 . DOI: 10.7527/S1000-6893.2014.0219

Abstract

The unified equation on the molecular velocity distribution function is presented for describing complex hypersonic flow transport phenomena covering various flow regimes by the computable model of Boltzmann collision integral. The discrete velocity ordinate method is used to discretize and reduce velocity space dimensionality of the velocity distribution function, and the gas-kinetic numerical schemes of coupling iteration are constructed directly to solve the molecular velocity distribution function. The computing models of hypersonic aerothermodynamics for the complex vehicles are developed by the evolution and updating based on the molecular velocity distribution function. The new parallel strategy of the gas-kinetic numerical algorithm is established by using the parallelizing technique of domain decomposition with the analysis from variable dependency relations, data communication and parallel expansibility. The data parallel distribution and parallel implementation are researched, the large-scale parallel program design is carried out and then the high-performance parallel algorithm has been established to simulate the hypersonic flow problems around complex vehicles covering various flow regimes, which can run stably in the tens of thousands of CPU or more scale. The hypersonic aerothermodynamics problems from high rarefied transition to continuum flow regimes around three-dimensional sphere-cone satellite body and complex wing-body combination shape with various Knudsen numbers, different Mach numbers, and diverse flying of angles have been computed and verified in high-performance computer with massive scale parallel. The computed results are found in high resolution of the flow fields and good agreement with the related reference experimental data, direct simulation Monte Carlo (DSMC) and theoretical predictions, and the hypersonic complex flow mechanism and changing laws are revealed. It is probably practical that the applying research approaches of the gas-kinetic unified algorithm can be provided to simulate complex hypersonic flow problems covering the whole of flow regimes.

参考文献

[1] Tsien H S. Superaerodynamics,mechanics of rarefied gases[J]. Journal of Aeronautics Science, 1946, 13(12): 653-664.



[2] Whitehead A H, Jr. NASP aerodynamics, AIAA-1989-5013[R]. Reston: AIAA, 1989.



[3] Zhuang F G, Cui E J, Zhang H X. Some development of future spacecrafts and aerodynamics tasks[C]//Proceedings of First Aerodynamics and Aerothermodynamics. Beijing: National Defense Industry Press, 2006: 1-12 (in Chinese). 庄逢甘, 崔尔杰, 张涵信. 未来空间飞行器的某些发展和空气动力学的任务[C]//中国第一届近代空气动力学与气动热力学会议论文集. 北京: 国防工业出版社, 2006: 1-12.



[4] Chapmann S, Cowling T G. The mathematical theory of non-uniform gases[M]. 3rd ed. Cambridge: Cambridge University Press, 1990.



[5] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases: I.small amplitude processes is charged and neutral one-component system[J].Physics of Review, 1954, 94: 511-525.



[6] Abe T, Oguchi H. A hierarchy kinetic model and its applications[C]//Potter J I. Rarefied Gas Dynamics. Reston: AIAA, 1977: 781-793.



[7] Shakhov E M. Kinetic model equations and numerical results[C]//Oguchi H. Proceedings of 14th International Symposium on Rarefied Gas Dynamics. Tokyo: University of Tokyo Press, 1984: 137-148.



[8] Yang J Y, Huang J C. Rarefied flow computations using nonlinear model Boltzmann equtions[J]. Journal of Computational Physics, 1995, 120(2): 323-339.



[9] Li Z H, Zhang H X. Study on gas kinetic algorithm for flows from rarefied transition to continuum[J]. Acta Aerodynamica Sinica, 2000, 18(3): 255-263 (in Chinese). 李志辉, 张涵信. 稀薄流到连续流的气体运动论统一数值算法初步研究[J]. 空气动力学学报, 2000, 18(3): 255-263.



[10] Mieussens L. Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries[J]. Journal of Computational Physics, 2000, 162(2): 429-466.



[11] Li Z H, Zhang H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics, 2004, 193(2): 708-738.



[12] Li Z H, Zhang H X. Study on gas kinetic numerical algorithm using Boltzmann model equation[J].Advances in Mechanics, 2005, 35(4): 559-576 (in Chinese). 李志辉, 张涵信. 基于Boltzmann模型方程的气体运动论统一算法研究[J]. 力学进展, 2005, 35(4): 559-576.



[13] Cercignani C. Kinetic theories and the Boltzmann equation[M]. Berlin: Springer-Verlag, 1984.



[14] Zhang H X, Shen M Y. Computational fluid dynamics—principle and application of difference method[M]. Beijing: National Defense Industry Press, 2003 (in Chinese). 张涵信, 沈孟育.计算流体力学——差分方法的原理和应用[M]. 北京: 国防工业出版社, 2003.



[15] Golub G H,Welsch J. Calculation of Gauss quadrature rules [J]. Mathematics of Computation, 1969, 23(106): 221-230.



[16] Li Z H, Zhang H X. HPF parallel computation based on Boltzmann model equation for flows past complex body from various flow regimes[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(2): 175-181 (in Chinese). 李志辉, 张涵信. 基于Boltzmann模型方程不同流区复杂三维绕流HPF并行计算[J]. 航空学报, 2006, 27(2): 175-181.



[17] Long L N, Kamon M, Myczkowski J. A massively parallel algorithm to solve the Boltzmann (BGK) equation,AIAA-1992-0563[R]. Reston: AIAA, 1992.



[18] Sharipov F. Hypersonic flow of rarefied gas near the Brazilian satellite during its reentry into atmosphere[J]. Brazilian Journal of Physics, 2003, 33(2): 398-405.

文章导航

/