电子与控制

基于矩阵填充的二维自适应波束形成算法

  • 曾文浩 ,
  • 朱晓华 ,
  • 李洪涛 ,
  • 陈诚 ,
  • 马义耕
展开
  • 南京理工大学 电子工程与光电技术学院, 南京 210094
曾文浩,男,博士研究生。主要研究方向:雷达信号处理,阵列信号处理,矩阵填充雷达信号采样与处理。Tel:025-84315126 E-mail:trikona54@163.com;李洪涛,男,博士,讲师。主要研究方向:雷达信号处理、阵列信号处理、压缩感知雷达信号采样与处理。Tel:025-84315550 E-mail:liht@njust.edu.cn

收稿日期: 2014-10-16

  修回日期: 2015-01-17

  网络出版日期: 2015-01-23

基金资助

国家自然科学基金(61401204)

2D adaptive beamforming algorithm based on matrix completion

  • ZENG Wenhao ,
  • ZHU Xiaohua ,
  • LI Hongtao ,
  • CHEN Cheng ,
  • MA Yigeng
Expand
  • School of Electronic and Optical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China

Received date: 2014-10-16

  Revised date: 2015-01-17

  Online published: 2015-01-23

Supported by

National Natural Science Foundation of China (61401204)

摘要

针对基于矩阵填充的二维自适应波束形成问题,提出一种基于奇异值门限(SVT)的特征分解线性约束最小方差(SVT-ELCMV)算法。首先建立二维自适应波束形成矩阵填充模型,其次验证接收信号矩阵满足零空间性质(NSP),并分析最小可恢复阵元数,最后以SVT算法将稀疏阵列信号恢复为完整信号,并通过修正的特征分解线性约束最小方差(LCMV)形成有效波束。算法解决了稀疏阵列平均副瓣大幅度上升的缺陷,且在平面阵列部分阵元无法正常工作时依然有效。计算机仿真表明:SVT-ELCMV算法可使稀疏阵列具有与完整阵列相同的二维波束形成能力,并可有效抑制干扰信号,验证了算法的有效性和优越性。

本文引用格式

曾文浩 , 朱晓华 , 李洪涛 , 陈诚 , 马义耕 . 基于矩阵填充的二维自适应波束形成算法[J]. 航空学报, 2016 , 37(5) : 1573 -1579 . DOI: 10.7527/S1000-6893.2015.0027

Abstract

The two-dimensional (2D) adaptive beamforming based on matrix completion is considered, and a singular value threshold (SVT) based-eigenvalues decomposition linearly constrained minimum variance (SVT-ELCMV) algorithm is proposed. Firstly, a signal model of two-dimensional adaptive beamforming is established based on the matrix completion. And then, the received signal is proved to satisfy the null space property (NSP). Furthermore, the minimum number of array elements to recover the sparse matrices has been analyzed. Finally, the sparse signal is recovered to full signal by SVT algorithm and an effective beam is formed based on the modified LCMV algorithm. This algorithm overcomes the problem that the average sidelobes increases significantly in sparse array, and it keeps valid in the situation when some elements of the sparse array do not work. Computer simulation shows that the SVT-ELCMV algorithm makes the sparse array have the same beamforming capability with the full array. Moreover, the proposed algorithm can restrain the interference signals effectively, so the superiority of the algorithm is verified.

参考文献

[1] DUDGEON D E. Fundamentals of digital array processing[J]. Proceedings of the IEEE, 1977, 65(6):898-904.
[2] 保铮, 廖桂生, 吴仁彪, 等. 相控阵机载雷达杂波抑制的时-空二维自适应滤波[J]. 电子学报, 1993, 21(9):1-7. BAO Z, LIAO G S, WU R B, et al. 2-D temporal-spatial adaptive clutter suppression for phased array airborne radars[J]. Acta Electronica Sinica, 1993, 21(9):1-7(in Chinese).
[3] 唐波, 汤俊, 彭应宁. 圆台阵列杂波模型及空时二维自适应处理[J]. 航空学报, 2010, 31(3):587-592. TANG B, TANG J, PENG Y N. Clutter model and space time adaptive processing for truncated cone array[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):587-592(in Chinese).
[4] 刘聪锋, 廖桂生. 最差性能最优通用信号模型稳健波束形成算法[J]. 电子学报, 2010, 38(6):1249-1255. LIU C F, LIAO G S.Robust beamforming algorithm for general signal models using worst-case performance optmization[J]. Acta Electronica Sinica, 2010, 38(6):1249-1255(in Chinese).
[5] 李洪涛, 贺亚鹏, 肖瑶, 等. 基于压缩感知的单通道鲁棒自适应波束形成算法[J]. 电子与信息学报, 2012, 34(10):2421-2426. LI H T, HE Y P, XIAO Y, et al. Compressive sensing based single-channel robust adaptive beamforming algorithm[J]. Journal of Electronics & Information Technology, 2012, 34(10):2421-2426(in Chinese).
[6] 陆珉, 许红波, 朱宇涛, 等. MIMO雷达DOA估计阵列设计[J]. 航空学报, 2010, 31(7):1410-1416. LU M, XU H B, ZHU Y T, et al. Array design of MIMO radar estimation of DOA[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1410-1416(in Chinese).
[7] ZHANG W, LIU W, WANG J, et al. Computationally efficient 2-D DOA estimation for uniform rectangular arrays[J]. Multidimensional Systems and Signal Processing, 2014, 25(4):847-857.
[8] YARDIBI T, LI J, STOICA P, et al. Sparse representations and sphere decoding for array signal processing[J]. Digital Signal Processing, 2012, 22(2):253-262.
[9] CANDÈS E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational mathematics, 2009, 9(6):717-772.
[10] CAI J F, CANDÈS E J, SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4):1956-1982.
[11] CANDÈS E J, ELDAR Y C, STROHMER T, et al. Phase retrieval via matrix completion[J]. SIAM Journal on Imaging Sciences, 2013, 6(1):199-225.
[12] RECHT B, RÈ C. Parallel stochastic gradient algorithms for large-scale matrix completion[J]. Mathematical Programming Computation, 2013, 5(2):201-226.
[13] CANDÈS E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3):11-37.
[14] CHI E C, ZHOU H, CHEN G K, et al. Genotype imputation via matrix completion[J]. Genome Research, 2013, 23(3):509-518.
[15] MA S, GOLDFARB D, CHEN L. Fixed point and Bregman iterative methods for matrix rank minimization[J]. Mathematical Programming, 2011, 128(1-2):321-353.
[16] CHEN C, HE B, YUAN X. Matrix completion via an alternating direction method[J]. IMA Journal of Numerical Analysis, 2012, 32(1):227-245.
[17] CANDES E J, ELDAR Y C, STROHMER T, et al. Phase retrieval via matrix completion[J]. SIAM Journal on Imaging Sciences, 2013, 6(1):199-225.
[18] WEN Z, YIN W, ZHANG Y. Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm[J]. Mathematical Programming Computation, 2012, 4(4):333-361.
[19] KALOGERIAS, DIONYSIOS S, PETROPULU, et al. Matrix completion in colocated MIMO radar:Recoverability, bounds & theoretical guarantees[J]. IEEE Transactions on Signal Processing, 2014, 62(2):309-321.
[20] HEIDENREICH P, ZOUBIR A M, RUBSAMEN M. Joint 2-D DOA estimation and phase calibration for uniform rectangular arrays[J]. IEEE Transactions on Signal Processing, 2012, 60(9):4683-4693.
[21] 李洪涛, 贺亚鹏, 朱晓华, 等. 基于特征向量的线性约束最小方差自适应方向图控制[J]. 南京理工大学学报:自然科学版, 2011, 35(4):529-533. LI H T, HE Y P, ZHU X H, et al. Eigenvector-based linearly constrained minimum variance adaptive pattern control algorithm[J]. Journal of Nanjing University of Science and Technology, 2011, 35(4):529-533(in Chinese).

文章导航

/