电子与控制

基于定位误差修正的运动目标TDOA/FDOA无源定位方法

  • 刘洋 ,
  • 杨乐 ,
  • 郭福成 ,
  • 姜文利
展开
  • 1. 国防科学技术大学 电子科学与工程学院, 长沙 410073;
    2. 江南大学 物联网工程学院, 无锡 214122
刘洋 男, 博士研究生。主要研究方向:无源定位和雷达信号处理。Tel: 0731-84573490 E-mail: ruben052013@126.com;杨乐 男, 博士, 副教授, 硕士生导师。 主要研究方向: 无源定位和传感器网络、目标跟踪及信号检测。Tel: 0731-84573490 E-mail: le.yang.le@gmail.com;郭福成 男, 博士, 教授, 博士生导师。 主要研究方向: 无源定位、跟踪滤波、信号处理技术。Tel: 0731-84573490 E-mail: gfcly@21cn.com;姜文利 男, 博士, 教授, 博士生导师。主要研究方向: 综合电子战技术、空间信息处理。Tel: 0731-84573490 E-mail: jiangwenlibetter@163.com

收稿日期: 2014-06-15

  修回日期: 2015-01-07

  网络出版日期: 2015-01-23

基金资助

国家自然科学基金(61304264);国防科技重点实验室基金 (9140C860304)

Moving targets TDOA/FDOA passive localization algorithm based on localization error refinement

  • LIU Yang ,
  • YANG Le ,
  • GUO Fucheng ,
  • JIANG Wenli
Expand
  • 1. College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    2. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China

Received date: 2014-06-15

  Revised date: 2015-01-07

  Online published: 2015-01-23

Supported by

National Natural Science Foundation of China(61304264); Foundation of National Defense Key Laboratory of China (9140C860304)

摘要

针对时差(TDOA)、频差(FDOA)无源定位的两步加权最小二乘(TSWLS)方法定位均方根误差(RMSE)和定位偏差适应测量噪声能力差的问题,在分析了影响两步法定位性能的因素基础上提出一种基于一阶泰勒级数展开的定位误差修正方法。该方法的第1步和两步法相同;其第2步避免了两步法第2步中引入估计偏差的平方运算,利用一阶泰勒级数展开得到第1步定位误差的线性最小均方估计,修正第1步定位结果得到目标位置和速度的最终估计,从理论上证明了该方法可以达到定位的克拉美罗下限(CRLB)。计算机仿真对比了新方法和TSWLS方法、基于泰勒级数(TS)展开的迭代极大似然(ML)方法以及约束总体最小二乘(CTLS)方法的定位性能,新算法复杂度和两步法相当,且均方误差和定位偏差低于两步法、泰勒级数法和CTLS方法。

本文引用格式

刘洋 , 杨乐 , 郭福成 , 姜文利 . 基于定位误差修正的运动目标TDOA/FDOA无源定位方法[J]. 航空学报, 2015 , 36(5) : 1617 -1626 . DOI: 10.7527/S1000-6893.2015.0010

Abstract

For the two-stage weighted least squares (TSWLS) technique of passive source localization using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements, which has the problem that the root mean square error (RMSE) and localization bias is large as the measurement noise increases. Based on analyzing the factor influencing the performances of the TSWLS firstly and then improves the TSWLS via Taylor-series (TS) expansion technique. The first stage of the new algorithm is the same as the one of TSWLS. At the second stage of the new algorithm, the localization error of the first stage is identified through utilizing the first-order Taylor-series expansion. Through updating the first-stage localization error, the final localization output is obtained. Theoretical performance analysis shows that the proposed estimator can attain the Cramer-Rao lower bound (CRLB) accuracy. Computer simulations are used to contrast the new technique with the TSWLS algorithm, the iterative maximum likelihood method based on TS and the constrained total least squares (CTLS) algorithm in terms of their localization RMSE and the localization bias. The new algorithm whose complexity is almost the same as TSWLS, the RMSE and localization bias are lower than TSWLS, TS and CTLS algorithm.

参考文献

[1] Chan Y T, Ho K C. A simple and efficient estimator for hyperbolic location [J]. IEEE Transactions Signal Processing, 1994, 42(8): 1905-1915.
[2] Xu Z, Qu C W, Luo H Z. Novel multiple moving observers TDOA localization algorithm without introducing intermediate variable[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1665-1672 (in Chinese).徐征, 曲长文, 骆卉子. 无需中间变量的多运动站时差定位新算法[J]. 航空学报, 2014, 35(6): 1665-1672.
[3] Carter G C. Time delay estimation for passive sonar signal processing [J]. IEEE Transactions on Acoustics, Speech, Signal Processing, 1981, ASSP-29(3): 462-470.
[4] Foy W H. Position-location solution by Taylor-series estimation [J]. IEEE Transactions Aerospace Electronic System, 1976, 12(3): 187-194.
[5] Ho K C, Xu W W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453-2463.
[6] Guo F C, Fan Y. A method of dual-satellites geolocation using TDOA and FDOA and its precision analysis[J]. Journal of Astronautics, 2008, 29(4): 1381-1386 (in Chinese).郭福成, 樊昀. 双星时差频差联台定位方法及其误差分析[J]. 宇航学报, 2008, 29(4): 1381-1386.
[7] Yu H G, Huang G M, Gao J. Approximate maximum likelihood algorithm for moving source localization using TDOA and FDOA measurements [J]. Chinese Journal of Aeronautics, 2012, 25(4): 593-597.
[8] Guo F C, Ho K C. A quadratic constraint solution method for TDOA and FDOA localization[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing, Piscataway, NJ: IEEE, 2011: 2588-2591.
[9] Yu H G, Huang G M, Gao J. Constrained total least-squares localization algorithm using time difference of arrival and frequency difference of arrival measurements with sensor location uncertainties[J]. IET Radar Sonar & Navigation, 2012, 6(9): 891-899.
[10] Yu H G, Huang G M, Gao J, et al. An efficient constrained weighted least squares algorithm for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Wireless Communications, 2012, 11(3): 44-47.
[11] Yu H G, Huang G M, Gao J. Practical constrained least-square algorithm for moving source location using TDOA and FDOA measurements[J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 488-494.
[12] Qu F Y, Meng X W. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm [J]. Journal of Electronics and Information Technology, 2014, 36(5): 1075-1081 (in Chinese).曲付勇, 孟祥伟. 基于约束总体最小二乘方法的到达时差到达频差无源定位算法[J]. 电子与信息学报, 2014, 36(5): 1075-1081.
[13] Qu F Y, Guo F C, Meng X W, et al. Constrained location algorithms based on total least squares method using TDOA and FDOA measurements[C]//IET International Conference on Automatic Control and Artificial Intelligence, 2012: 2587-2590.
[14] Qu F Y, Guo F C, Meng X W, et al. Comments on constrained total least-squares localization algorithm using time difference of arrival and frequency difference of arrival measurements with sensor location uncertainties [J]. IET Radar, Sonar & Navigation, 2014, 8(6): 692-693.
[15] Schifrin B. A note on constrained total least-squares estimation[J]. Linear Algebra and Its Applications, 2006, 417(6): 245-258.
[16] Wei H W, Peng R, Wan Q. Multidimensional scaling analysis for passive moving target localization with TDOA and FDOA measurements [J]. IEEE Transactions on Signal Processing, 2010, 58(3): 677-688.
[17] Wang G, Li Y M, Ansari N. A semi-definite relaxation method for source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2): 853-862.
[18] Xu B, Qi W D, Li W, et al. Turbo-TSWLS: enhanced two-step weighted least squares estimator for TDOA-based localization[J]. Electronics Letters, 2012, 48(25):1597-1598.
[19] Kay S M. Fundamentals of statistical signal processing volume I: estimation theory [M]. Upper Saddle River, NJ: Prentice Hall, 1998: 24-45.
[20] Zhang X D. Matrix analysis and application [M].Beijing: Tsinghua University Press, 2004: 65-69 (in Chinese).张贤达.矩阵分析与应用[M].北京: 清华大学出社, 2004: 65-69.
[21] Amar A, Leus G, Friedlander B. Emitter localization given time delay and frequency shift measurements [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1826-1837.

文章导航

/