基于轮地作用参数和PLSDA方法的月壤力学性能评估
收稿日期: 2014-11-06
修回日期: 2014-12-25
网络出版日期: 2015-01-07
基金资助
国家自然科学基金(51375199);中国空间技术研究院总体部资助项目(2012M520676);吉林大学国防预研基金(JDXJY20130207);工程仿生教育部重点实验室开放基金(K201406)
Mechanical performance estimation of lunar soil using wheel-soil interaction parameter and PLSDA
Received date: 2014-11-06
Revised date: 2014-12-25
Online published: 2015-01-07
Supported by
National Natural Science Foundation of China (51375199);Foundation of China Academy of Space Technology (2012M520676);National Defense Pre-research Foundation of Jilin University (JDXJY20130207);Key Laboratory Opening Funding of Key Laboratory of Bionic Engineering of Ministry of Education (K201406)
为评估在轨月球车周边环境月壤力学性能,以月球车辙信息、轮上载荷和滑转率作为基本参数,提出了16个二元及三元标识量,结合偏最小二乘判别方法(PLSDA)建立评估月壤力学状态模型。根据容重对模拟月壤力学状态进行分级,分别为松软状态、自然状态和紧实状态。应用轮壤相互作用试验台共采集247组试验数据,每种模拟月壤状态的试验数据按照2:1比例随机划分为校正集样本和预测集样本,最终校正集和预测集样本个数分别为166和81个。考虑到原始数据值相差大和所提出部分标识量包含冗余信息的特点,因此在建立PLSDA模型时,应用均值中心化预处理方法对原始数据进行数据预处理,并优选10个标识量建立识别月壤力学状态的PLSDA模型,对应的校正集的准确率和预测集的准确率分别为90.96%和90.12%。结果表明,应用PLSDA方法并结合月球车的车辙信息、轮上载荷和滑转率以及优选标识量所建立的评估月壤力学状态判别模型,其计算快速准确,可用于月球车在轨评估车轮前方月壤的力学特性和通过性能评估。
薛龙 , 邹猛 , 李建桥 , 党兆龙 , 黄晗 , 陈百超 . 基于轮地作用参数和PLSDA方法的月壤力学性能评估[J]. 航空学报, 2015 , 36(11) : 3751 -3758 . DOI: 10.7527/S1000-6893.2014.0364
In order to estimate the mechanical performance of lunar soil nearby a lunar roving vehicle and terrain traversability, partial least square discriminant analysis (PLSDA) method is adopted to estimate mechanical parameters of lunar soil combined with 16 binary and ternary signatures which are proposed based on the available information of a lunar roving vehicle, such as wheel load, slip ratio and wheel sinkage. In this paper, mechanical state of lunar soil simulant is divided into three kinds of bulk density:soft, normal and hard. A total of 247 test data of wheel-terrain interaction test bed are collected. Then these data are assigned to calibration set and prediction set at the ratio of 2:1 randomly, and the number of calibration set and prediction set are 166 and 81, respectively. Considering that there are obvious differences among raw data and some signatures contained useless information, the optimized model of discriminant analysis is developed using the data pretreatment of mean center and 10 optimized combination of signatures, and the accuracy of calibration set and prediction set are 90.96% and 90.12%, respectively. The result demonstrates that wheel load, slip ratio, wheel sinkage and selected signatures combined with PLSDA method are suitable to estimate the mechanical parameters of lunar soil quickly. And the method can be used for trafficability prediction of lunar roving vehicle on line.
Key words: terramechanics; lunar roving vehicle; PLSDA; slip ratio; sinkage
[1] Moore H J, Bickler D B, Crisp J A, et al. Soil-like deposits observed by Sojourner, the Pathfinder rover[J]. Journal of Geophysical Research:Planets, 1999, 104(E4):8729-8746.
[2] Sullivan R, Anderson R, Biesiadecki J, et al. Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs[J]. Journal of Geophysical Research:Planets, 2011, 116(E2):364-371.
[3] Cui P Y, Xu R, Zhu S Y, et al. State of the art and development trends of on-borad autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):13-28(in Chinese).崔平远,徐瑞,朱圣英,等.深空探测器自主技术发展现状与趋势[J].航空学报, 2014, 35(1):13-28.
[4] Chen J B, Nie H, Wan J L. Digital design and landing performance influence factors of deep space lander[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):541-554(in Chinese).陈金宝,聂宏,万峻麟.深空探测着陆器数字化设计及着陆性能影响因素[J].航空学报, 2014, 35(2):541-554.
[5] Dong W L, Liu L, Zhou S D. Model reduction analysis of soft landing dynamics for lunar lander with local nonlinearities[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1319-1328(in Chinese).董威利,刘莉,周思达.含局部非线性的月球探测器软着陆动力学模型降阶分析[J].航空学报, 2014, 35(5):1319-1328.
[6] Iagnemma K, Shibly H, Dubowsky S. On-line terrain parameter estimation for planetary rovers[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2002:3142-3147.
[7] Kang S. Terrain parameter estimation and traversability assessment for mobile robots[D]. Seoul:Seoul National University, 2003.
[8] Shibly H, Iagnemma K, Dubowsky S. An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers[J]. Journal of Terramechanics, 2005, 42(1):1-13.
[9] Chhaniyara S, Brunskill C, Yeomans B, et al. Terrain trafficability analysis and soil mechanical property identification for planetary rovers:A survey[J]. Journal of Terramechanics, 2012, 49(2):115-128.
[10] Brooks C A, Iagnemma K, Dubowsky S. Visual wheel sinkage measurement for planetary rover mobility characterization[J]. Autonomous Robots, 2006, 21(1):55-64.
[11] Hutangkabodee S, Zweiri Y H, Seneviratne L D, et al. Soil parameter identification for wheel-terrain interaction dynamics and traversability prediction[J]. International Journal of Automation and Computing, 2006, 3(3):244-251.
[12] Iagnemma K, Kang S, Brooks C, et al. Multi-sensor terrain estimation for planetary rovers[C]//Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space. 2003.
[13] Cross M, Ellery A, Qadi A. Estimating terrain parame-ters for a rigid wheeled rover using neural networks[J]. Journal of Terramechanics, 2013, 50(3):165-174.
[14] Cui P Y, Liu B, Ju H H. Research on mechanical parameters online estimation of lunar soil[J]. Computer Measurem & Control, 2008, 16(2):245-247(in Chinese).崔平远,刘冰,居鹤华.月壤力学参数在线估计算法研究[J].计算机测量与控制, 2008, 16(2):245-247.
[15] Li M, Gao F, Sun P, et al. Mechanical parameters reverse estimation of lunar soil and experimental verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9):1081-1085(in Chinese).李萌,高峰,孙鹏,等.月壤力学参数反求及试验验证[J].北京航空航天大学学报, 2011, 37(9):1081-1085.
[16] Ding L, Gao H B, Deng Z Q, et al. Experimental study and analysis on driving wheels' performance for planetary exploration rovers moving in deformable soil[J]. Journal of Terramechanics, 2011, 48(1):27-45.
[17] Ding L, Gao H B, Deng Z Q, et al. An approach of identifying mechanical parameters for lunar soil based on integrated wheel-soil interaction terramechanics model of rovers[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1112-1123(in Chinese).丁亮,高海波,邓宗全,等.基于月球车轮地作用地面力学积分模型的月壤力学参数辨识方法[J].航空学报, 2011, 32(6):1112-1123.
[18] Ding L, Gao H B, Deng Z Q, et al. Terramechanics model for wheel-terrain interaction of lunar rover based on stress distribution[J]. Journal of Mechanical Engineering, 2009, 45(7):49-55(in Chinese).丁亮,高海波,邓宗全,等.基于应力分布的月球车轮地相互作用地面力学模型[J].机械工程学报, 2009, 45(7):49-55.
[19] Gao H B, Guo J L, Ding L, et al. Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics[J]. Journal of Terramechanics, 2013, 50(5-6):327-343.
[20] Jin D W, Li J Q, Dang Z L, et al. Study on model for sinkage of lunar rover wheel under slip[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1215-1221(in Chinese).金大玮,李建桥,党兆龙,等.滑转条件下月球车轮沉陷模型研究[J].航空学报, 2013, 34(5):1215-1221.
[21] Zou M, Li J Q, Liu G M, et al. Experimental study of terramechanics characters of simulant lunar soil[J]. Rock and Soil Mechanics, 2011, 32(4):1057-1061(in Chinese).邹猛,李建桥,刘国敏,等.模拟月壤地面力学性质试验研究[J].岩土力学, 2011, 32(4):1057-1061.
[22] Zou M, Li J Q, He L, et al. Experimental study on the pressure-sinkage characteristic of the simulant lunar regolith with different particle size distributions[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2338-2346(in Chinese).邹猛,李建桥,何玲,等.不同粒径分布模拟月壤承压特性试验研究[J].航空学报, 2012, 33(12):2338-2346
/
〈 | 〉 |