基于控制变量参数化的主动反拦截突防最优控制计算方法
收稿日期: 2014-06-23
修回日期: 2014-07-29
网络出版日期: 2015-01-07
Control variable parameterization-based computational method for optimal control of initiative anti-interception penetration
Received date: 2014-06-23
Revised date: 2014-07-29
Online published: 2015-01-07
针对由于敌防空系统防御能力不断提高所带来的进攻导弹突防难题,提出主动反拦截突防(IAIP)的概念,以弥补传统机动突防仅考虑进攻导弹的逃逸而忽略其攻击任务的缺陷。根据IAIP制导的内涵,在综合考虑目标的机动性能、拦截导弹末段的拦截特性及进攻导弹的控制系统性能的基础上,建立进攻导弹-目标-拦截导弹的三体运动模型。将突防制导指令的设计等效为最优控制的求解,其中突防指令为实现燃料最省目标的最优解,进攻导弹的过载、拦截导弹的脱靶量、进攻导弹的攻击角、打击精度和突防后的视线角,分别为控制约束、路径约束和末端约束。借鉴控制变量参数化(CVP)方法将最优控制问题转化为非线性数学规划问题,并将路径约束离散化后采用序列二次规划(SQP)算法得到突防时机给定条件下制导指令的数值解。提出基于CVP的混合遗传算法(CVP-GA),用于求解最优突防时机及制导指令。仿真结果显示,采用IAIP最优控制算法的进攻导弹在成功突防后的打击精度仍可满足任务要求,且其燃料消耗相对于传统串联式突防方法降低了23.7%,验证了该方法的有效性及优越性。
王芳 , 林涛 , 张克 . 基于控制变量参数化的主动反拦截突防最优控制计算方法[J]. 航空学报, 2015 , 36(6) : 2037 -2046 . DOI: 10.7527/S1000-6893.2014.0359
To solve the problem caused by experiencing increases in defense capability of enemy antiaircraft system, the concept of initiative anti-interception penetration (IAIP) is proposed, to make up for the defects of the traditional penetration that only takes escape into account, while ignoring attack mission. According to the connotation of IAIP guidance, and considering the maneuver performance of target, terminal intercepting characteristics of interceptor missile and control system performance of attack missile, the three-body motion model, named attacker-target-interceptor, has been established, and the design of penetration guided command has been equivalent to solving nonlinear optimal control problem, where the penetration command is the solution of optimal control for minimizing fuel consumption, overload of attacker, miss distance of interceptor, attack angle, hit precision and angle of sight after penetration of attacker, are control constraint, path constraint and terminal constraint. After the optimal control problem is transformed into nonlinear integer programming model based on control variable parameterization (CVP) method and the continuous path constraint is simulated by scatter point, sequential quadratic program (SQP) algorithm is used to get the numerical solution of guidance commands under the condition of penetration occasion is given. An hydride genetic algorithm based on CVP (CVP-GA), is proposed to obtain the optimal penetration occasion and guided command. Simulation results show that hit accuracy of attacker used the optimal control of IAIP can still meet the mission requirements after successful penetration its fuel consumption is reduced by 23.7% compared with the traditional tandem penetration method, demonstrating the efficiency and superiority of the proposed method.
[1] Guan S Y, Zhang K, Tu Z B. Discussions on penetration principles and technologies for anti-ship missile[J]. Tactical Missile Technology, 2010(4): 1-6 (in Chinese). 关世义, 张克, 涂震飚. 反舰导弹突防原理与突防技术探讨[J]. 战术导弹技术, 2010(4): 1-6.
[2] Gu W J, Wu Z D, Bi L J. Optimal terminal weaving maneuver strategy for anti-ship missile[J]. Tactical Missile Technology, 2011(3): 1-5 (in Chinese). 顾文锦, 武志东, 毕兰金. 反舰导弹最优末端蛇形机动策略[J]. 战术导弹技术, 2011(3): 1-5.
[3] Ma L, Jiang Q S, Wang H. Research on the model of anti-ship missile's mobile penetrating ability to ship-to-air missile[J]. Journal of Naval Aeronautical and Astronautical University, 2008, 23(2): 185-189 (in Chinese). 马良, 姜青山, 汪浩. 反舰导弹对舰空导弹的机动突防模型研究[J]. 海军航空工程学院学报, 2008, 23(2): 185-189.
[4] Chen Y, Wang D S, Fu X Z. Research on missile optimal penetrating maneuver scheme[J]. Fire Control & Command Control, 2009, 34(4): 30-33 (in Chinese). 陈晔, 王德石, 付兴振. 导弹最优突防机动方式研究[J]. 火力与指挥控制, 2009, 34(4): 30-33.
[5] Cheng J, Yang M, Guo Q. Design on maneuver penetration of missile with direct lateral thrust[J]. Journal of Solid Rocket Technology, 2008, 31(2): 111-117 (in Chinese). 程进, 杨明, 郭庆. 导弹直接侧向力机动突防方案设计[J]. 固体火箭技术, 2008, 31(2): 111-117.
[6] Jung B, Kim K S, Kim Y. Guidance law for evasive aircraft maneuvers using artificial intelligence [C]// Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2003: 5552-5563.
[7] Shi X L, Liu Y C, Wang C Q. Study of optimal evasive policy in anti-interception for aerodynamic missiles[J]. Tactical Missile Technology, 2007(3): 7-11 (in Chinese). 史晓丽, 刘永才, 王长青. 飞航导弹反拦截最优机动策略研究[J]. 战术导弹技术, 2007(3): 7-11.
[8] Akdag R, Altilar D T. A comparative study on practical evasive maneuvers against proportional navigation missiles, AIAA-2005-6352[R]. Reston: AIAA, 2005.
[9] Kim Y H, Tahk M J. Guidance synthesis for evasive maneuver of anti-ship missiles, AIAA-2007-6783[R]. Reston: AIAA, 2007.
[10] John C S. Missile terminal guidance and control against evasive targets, ADA378653[R]. Monterey, California: Naval Postgraduate School, 2000.
[11] Peter F, Anthony J. Optimization of launch vehicle ascent trajectories with path constraints and coast arcs[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 296-304.
[12] Hu S S. The optimal control theory and system[M]. Beijing: Science Press, 2006: 3-15 (in Chinese). 胡寿松. 最优控制理论与系统[M]. 北京: 科学出版社, 2006: 3-15.
[13] Yong E M, Chen L, Tang G J. A Survey of numerical methods for trajectory optimization of spacecraft[J]. Journal of Astronautics, 2008, 29(2): 397-405 (in Chinese). 雍恩米, 陈磊, 唐国金. 飞行器轨迹优化数值方法综述[J]. 宇航学报, 2008, 29(2): 397-405.
[14] Wang X L, Shan X X. Time-optimal control based on Bang-Bang theory[J]. Computer Simulation, 2006, 23(4): 163-167 (in Chinese). 王晓亮, 单雪雄. 基于Bang-Bang原理的时间最优控制问题求解[J]. 计算机仿真, 2006, 23(4): 163-167.
[15] Bretl T. Minimum-time optimal control of many robots that move in the same direction at different speeds[J]. IEEE Transactions on Robotics, 2012, 28(2): 351-363.
[16] Mehta S S, MacKunis W, Subramanian S, et al. Nonlinear control of hypersonic missiles for maximum target penetration, AIAA-2012-4886[R]. Reston: AIAA, 2012.
[17] Balku S, Yuceer M, Berber R. Control vector parameterization approach in optimization of alternating aerobic-anoxic systems[J]. Optimal Control Applications and Methods, 2009, 30(6): 573-584.
[18] Hu Y Q. Control variable parameterization based computational method for constrained optimal control problems[D]. Hangzhou: Zhejiang University, 2013 (in Chinese). 胡云卿. 基于控制变量参数化的带约束最优控制问题计算方法[D]. 杭州: 浙江大学, 2013.
[19] Yokoyama N, Suzuki S. Modified genetic algorithm for constrained trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(1): 139-144.
[20] Wuerl A, Crain T, Braden E. Genetic algorithm and calculus of variations-based trajectory optimization technique[J]. Journal of Spacecraft and Rockets, 2003, 40(6): 882-888.
/
〈 |
|
〉 |