基于角度与间距可控的纤维铺放轨迹规划
收稿日期: 2014-09-25
修回日期: 2014-12-01
网络出版日期: 2014-12-30
基金资助
国家“863”计划 (2012AA040209)
Trajectory planning of fiber placement based on controlled angle and interval
Received date: 2014-09-25
Revised date: 2014-12-01
Online published: 2014-12-30
Supported by
National High-tech Research and Development Program of China (2012AA040209)
对于具有复杂封闭型面的零件,传统等距偏置纤维铺放轨迹规划算法难以同时保证轨迹角度及轨迹间距,使得实际纤维铺放角度与设计角度易产生偏差。为此提出了基于脊线式基准的等铺放角初始轨迹生成算法与测地线式等距偏置批量轨迹生成算法相结合的角度控制轨迹规划算法,此方法集成了等角生成算法产生初始轨迹精度高和等距偏置算法产生批量轨迹效率高的优点,并添加角度控制功能,保证每条轨迹都能满足角度范围要求,有效减小和消除了实际铺放轨迹和设计铺放轨迹之间的差异,在保证轨迹生成角度与间距的同时提高了批量轨迹生成效率。在此算法基础上,采用CATIA 二次开发CAA技术和Visual Studio 2005平台开发了相应的软件,并对典型复杂构件S形进气道曲面算例进行了验证,证明了算法的有效性。
段玉岗 , 葛衍明 , 孟洋 , 辛志博 . 基于角度与间距可控的纤维铺放轨迹规划[J]. 航空学报, 2015 , 36(10) : 3475 -3482 . DOI: 10.7527/S1000-6893.2014.0335
For complex and closed profile parts, the traditional trajectory planning algorithm of isometric offset in fiber placement is difficult to generate both higher accuracy of trajectory angle and trajectory interval. This easily causes the deviation between actual placement angle and designed fiber ply angle. To overcome this problem, an angle control algorithm of trajectory planning is presented in this paper. This algorithm combines the uniform angle ridge-line-type datum algorithm of generating initial trajectory with the geodesic-type isometric offset algorithm to generate batch trajectories. And the algorithm has the advantages of both higher accuracy of generating initial trajectory and higher efficiency of generating batch trajectories. It can also control the angle of trajectories to ensure that each trajectory meet the requirement of the angle. This decreases and eliminates the difference between actual placement trajectories and designed placement trajectories. Angle control algorithm not only could ensure the accuracy of trajectory angle and trajectory interval, but also could improve the efficiency of generating batch trajectories. Then, the relevant software is developed based on the Component Application Architecture (CAA) technology of CATIA and Visual Studio 2005. And the algorithm has been successfully validated to plan the trajectory of the airplane's S-shaped inlet by using the developed software.
[1] Du S Y, Guan Z D. Strategic considerations for devel-opment of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10 (in Chinese). 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10.
[2] Xu B, An L L, Xiao J, et al. Generation of control in formation to movement of machine tool and simulation in composite fiber placement[J]. Manufacturing Automation, 2005, 27(1): 1-4, 73 (in Chinese). 许斌, 安鲁陵, 肖军, 等. 自动铺丝机运动控制信息的生成与仿真[J]. 制造业自动化,2005, 27(1): 1-4, 73.
[3] Li Y, Xiao J. The technology and application of fiber placement[J]. Fiber Composites, 2002(3): 39-41 (in Chinese). 李勇, 肖军. 复合材料纤维铺放技术及其应用[J]. 纤维复合材料, 2002(3): 39-41.
[4] Lin F J. Trajectory planning of automatic fiber placement of composite material parts with free profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005 (in Chinese). 林福建. 自由型面复合材料零件铺丝束成型轨迹规划[D]. 南京: 南京航空航天大学, 2005.
[5] Lukaszewicz D, Ward C, Potter K D. The engineering aspects of automated prepreg layup: History, present and future[J]. Composites Part B: Engineering, 2012, 43(3): 997-1009.
[6] Lewis H W, Romero J E. Composite tape placement apparatus with natural path generation means: US Patent, US4696707 A[P]. 1987-09-29.
[7] Waldhart C. Analysis of tow-placed, variable-stiffness laminates[D]. Blacksburg: Virginia Polytechnic Institute and State University, 1996.
[8] Wu K C, Gürdal Z. Thermal testing of tow-placed, variable stiffness panels[C]//42nd AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics and Materials Conference & Exhibit. Reston: AIAA, 2001: 1-21.
[9] Shirinzadeh B, Cassidy G, Oetomo D, et al. Trajectory generation for open-contoured structures in robotic fiber placement[J]. Robotics and Computer-Integrated Man-ufacturing, 2007, 23(4): 380-394.
[10] Shirinzadeh B, Alici G, Foong C W, et al. Fabrication process of open surfaces by robotic fiber placement[J]. Robotics and Computer-Integrated Manufacturing, 2004, 20(1): 17-28.
[11] Shirinzadeh B, Foong C W, Tan B H. Robotic fibre placement process planning and control[J]. Journal of Assembly Automation, 2000, 20(4): 313-320.
[12] Schueler K, Miller J, Hale R. Approximate geometric methods in application to the modeling of fiber placed composite structures[J]. Journal of Computing and Information Science in Engineering, 2004, 4(3): 251-256.
[13] Gürdal Z, Tatting B F, Wu C K. Variable stiffness com-posite panels: effects of stiffness variation on the inplane and buckling response[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 911-922.
[14] Lopes C S, Gürdal Z, Camanho P P. Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fibre laminates[J]. Computers & Structures, 2008, 86(9): 897-907.
[15] Shao Z X, Fu H Y, Han Z Y, et al. Path planning and optimization algorithm for fiber placement of S-shaped inlet[J]. Journal of Astronautics, 2010, 31(3): 855-861 (in Chinese). 邵忠喜, 富宏亚, 韩振宇, 等. S形进气道纤维铺放轨迹规划和优化算法[J]. 宇航学报, 2010, 31(3): 855-861.
[16] Wang N D, Liu Y, Xiao J. Fiber-placement path design for composite structures in pipy-form[J]. Journal of Computer-Aided Design & Computer Graphics, 2008, 20(2): 228-233 (in Chinese). 王念东, 刘毅, 肖军. 复合材料管状结构自动铺丝路径算法[J]. 计算机辅助设计与图形学学报, 2008, 20(2): 228-233.
[17] Dang X D, Xiao J, Huan D J. Implementation on fiber placement parallel equidistant path generation algorithm [J]. Journal of Wuhan University: Natural Science Edition, 2007, 53(5): 613-616 (in Chinese). 党旭丹, 肖军, 还大军. 自动铺丝平行等距轨迹规划算法实现[J]. 武汉大学学报: 理学版, 2007, 53(5): 613-616.
[18] Zhou Y, An L L, Zhou L S. Research on composite fiber placement path generation algorithm[J]. Aviation Precision Manufacturing Technology, 2006, 42(2): 39-41 (in Chinese). 周燚, 安鲁陵, 周来水. 复合材料自动铺丝路径生成技术研究[J]. 航空精密制造技术, 2006, 42(2): 39-41.
[19] Xiong W L, Xiao J, Wang X F, et al. Algorithm of adaptive path planning for automated placement on meshed surface[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 434-441 (in Chinese). 熊文磊, 肖军, 王显峰, 等. 基于网格化曲面的自适应自动铺放轨迹算法[J]. 航空学报, 2013, 34(2): 434-441.
[20] Wen L W, Li J F, Wang X F, et al. Adjustment algorithm based on structural design for automated tape laying and automated fiber placement[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1731-1739 (in Chinese). 文立伟, 李俊斐, 王显峰, 等. 基于结构设计的自调节铺放轨迹规划算法[J]. 航空学报, 2013, 34(7): 1731-1739.
[21] Chen W H. Differential geometry[M]. Beijing: Peking University Press, 2006: 241 (in Chinese). 陈维桓. 微分几何[M]. 北京:北京大学出版社, 2006: 241.
/
〈 |
|
〉 |