一类空间对称6R机构的运动学研究及组合应用
收稿日期: 2014-02-20
修回日期: 2014-04-14
网络出版日期: 2014-12-26
基金资助
国家自然科学基金(51305271,51105013);北京市自然科学基金(3133042)
Kinematic Investigation and Assembly Application of a Spatial Symmetric 6R Mechanism
Received date: 2014-02-20
Revised date: 2014-04-14
Online published: 2014-12-26
Supported by
National Natural Science Foundation of China (51305271, 51105013); Natural Science Foundation of Beijing (3133042)
可展开平板机构已广泛应用于平板天线、太阳翼等航天机构产品.为提高可展开平板机构的刚度和展收比,将空间对称6R机构应用于可展开平板机构设计.首先,根据约束条件,计算后给出了一种空间3R运动链的几何参数关系;然后,结合螺旋理论,分析了该3R运动链的约束螺旋系;进而根据对称性,研究了空间对称6R机构的自由度、奇异性等运动特征;在此基础上,提出了一种特殊的空间对称6R转动机构;最后,研究了空间对称6R机构的组合方法,设计出一种新型单自由度可展开平板组合机构,并对其进行了运动学仿真验证.该可展机构具有二维方向的展开收拢能力,为可展开平板机构的创新设计提供了有益参考.
杨毅 , 张武翔 . 一类空间对称6R机构的运动学研究及组合应用[J]. 航空学报, 2014 , 35(12) : 3459 -3469 . DOI: 10.7527/S1000-6893.2014.0058
The deployable panel structures are widely used in aerospace applications, such as planar antennas, solar panels, etc. In order to improve the stiffness and deploying-packing ratio of the deployable panel structures, the spatial symmetric 6R mechanism is applied to the deployable panel structure. According to the constraints, the geometrical parameters of a spatial 3R kinematic chain are firstly derived. Then, the constraint screw system of 3R chain is analyzed with screw theory. According to the symmetry characteristic, the kinematic features, such as mobility, singularity, etc., of this family of spatial symmetric 6R mechanisms are investigated. Based on that, a special symmetric 6R rotating mechanism is proposed. Finally, the assemblies of the spatial symmetric 6R mechanisms are studied and a novel deployable panel assembly structure, which has single degree of freedom, is proposed and validated by the kinematics simulation. This mechanism has the capability of deploying and packing in two dimensions. The achievement provides helpful references for designing novel deployable panel structure.
[1] Dai J S, Jones J R. Mobility in metamorphic mechanisms of foldable/erectable kinds[J]. ASME Journal of Mechanical Design, 1999, 121(3): 375-382.
[2] Zhao J S, Chu F L, Feng Z J. The mechanism theory and application of deployable structures based on SLE[J]. Mechanism and Machine Theory, 2009, 44(2): 324-335.
[3] Li D L, Zhang Z H, Yu Z. Kinematics analysis of spherical scissors deployable mechanisms[J]. Chinese Journal of Mechanical Engineering, 2013, 49(13): 1-7. (in Chinese) 李端玲, 张忠海, 于振. 球面剪叉可展机构的运动特性分析[J]. 机械工程学报, 2013, 49(13): 1-7.
[4] Chen Y, You Z. Square deployable frames for space applications, Part 1: theory[J]. Journal of Aerospace Engineering, 2006, 220(4): 347-354.
[5] Chen Y, You Z. Square deployable frames for space applications, Part 2: realization[J]. Journal of Aerospace Engineering, 2006, 221(1): 37-45.
[6] Viquerat A D, Hutt T, Guest S D. A plane symmetric 6R foldable ring[J]. Mechanism and Machine Theory, 2013, 63: 73-88.
[7] Racila L, Dahan M. Spatial properties of Wohlhart symmetric mechanism[J]. Meccanica, 2010, 45(2): 153-165.
[8] Ding X L, Yang Y, Dai J S. Design and kinematic analysis of a novel prism deployable mechanism[J]. Mechanism and Machine Theory, 2013, 63: 35-49.
[9] Yang Y, Ding X L. Design and analysis of mast based on spatial polyhedral linkages mechanism along radial axes[J]. Chinese Journal of Mechanical Engineering, 2011, 47(5): 26-34. (in Chinese) 杨毅, 丁希仑. 基于空间多面体向心机构的伸展臂设计研究[J]. 机械工程学报, 2011, 47(5): 26-34.
[10] Yang Y, Ding X L. Design and analysis of a deployable mechanism based on the four pyramid cell[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1257-1265. (in Chinese) 杨毅, 丁希仑. 四棱锥单元平板式可展开收拢机构的运动特性分析[J]. 航空学报, 2010, 31(6): 1257-1265.
[11] Lu S, Zlatanov D, Ding X, et al. A new family of deployable mechanisms based on the Hoekens linkage[J]. Mechanism and Machine Theory, 2014, 73: 130-153.
[12] Huang H L, Li B, Liu R Q, et al. Type synthesis of deployable/foldable articulated mechanisms[C]//Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation. Piscataway, NJ: IEEE, 2010: 991-996.
[13] Deng Z Q, Huang H L, Li B, et al. Synthesis of deployable/foldable single loop mechanisms with revolute joints[J]. Journal of Mechanisms and Robotics, 2011, 3(3): 0310061-03100612.
[14] Huang Z, Liu J F, Zeng D X. The general method of analysis of mechanism mobility based on constraint screw theory[J]. SCIENCE CHINA Technological Sciences, 2009, 39(1): 84-93. (in Chinese) 黄真, 刘婧芳, 曾达幸. 基于约束螺旋理论的机构自由度分析的普遍方法[J]. 中国科学E辑: 技术科学, 2009, 39(1): 84-93.
[15] Huang Z, Zhao Y S, Zhao T S. Advanced spatial mechanism[M]. Beijing: Higher Education Press, 2006: 116-135. (in Chinese) 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京: 高等教育出版社, 2006: 116-135.
/
〈 | 〉 |