无人机绳钩回收系统的动力学特性仿真分析
收稿日期: 2014-10-20
修回日期: 2014-12-15
网络出版日期: 2014-12-24
Simulation analysis of dynamic characteristic of UAV rope-hook recovery system
Received date: 2014-10-20
Revised date: 2014-12-15
Online published: 2014-12-24
无人机(UAV)精确定点回收是促进中小型无人机广泛应用的关键技术,而绳钩回收是一种适合小型固定翼无人机在狭窄场地或舰船上实现精确定点回收的先进回收方式,其具有良好的研究应用价值和开发前景。采用基于矢量封闭环、欧拉运动学和动力学方程的联立约束法,解决了无人机绳钩回收系统的空间机构运动的动力学求解问题。基于无人机绳钩回收系统动力学模型,对无人机回收时系统吸能缓冲过程中的动力学特性进行了深入分析。在MATLAB/Simulink环境中通过对动力学模型的仿真,得出以无人机速度变化为代表的系统主要性能指标,同时探讨了参数变化对系统主要性能的影响,并分析了回收过程中拦阻力峰值载荷下的机翼应力和应变。结果表明,无人机绳钩回收性能优良,是一种可开发研制的新型回收技术,为开展无人机绳钩回收系统的工程研制提供了重要的理论参考。
卢伟 , 马晓平 , 周明 , 孙林峰 . 无人机绳钩回收系统的动力学特性仿真分析[J]. 航空学报, 2015 , 36(10) : 3295 -3304 . DOI: 10.7527/S1000-6893.2014.0347
Accurate-point recovery of unmanned aerial vehicle (UAV) is a critical technology to promote the widespread use of small- and medium-sized UAVs. The rope-hook recovery technology provides an advanced accurate-point recovery method for small-sized fixed-wing UAV in limited recovery fields or naval vessels, which is of great value in advanced research and application and has splendid future. The space mechanism dynamics problem of the rope-hook recovery system is resolved by using the simultaneous constraint method based on the closing-vector-circle method and Euler kinematical and dynamical equations. The energy-absorbing and buffer capability of the rope-hook recovery system is deeply analyzed based on the dynamic modeling of UAV rope-hook recovery system. The main characteristic of the system, for instance, the velocity change, is estimated through the simulation of the dynamics modeling in the environment of MATLAB/Simulink. The influences of parameter variation on the system's main characteristics are discussed. The stress and strain of the wing forced by the arresting peak load in the process of recovery are analyzed. The results and analysis show preliminarily that the rope-hook recovery system has good performance and is a new recovery technology to develop. It offers a significant theoretical reference for the manufacture of the UAV rope-hook recovery system.
[1] Dennis B D. Methods and apparatuses for capturing and recovering unmanned aircraft, including a cleat for capturing aircraft on a line: United States, 7059564[P]. 2006-06-13.
[2] Zhao T. Development of the shipborne UAVs[J]. Ship Electronic Engineering, 2010, 30(4): 21-24 (in Chinese). 赵涛. 舰载无人机的发展[J]. 舰船电子工程, 2010, 30(4): 21-24.
[3] Lv X H. The ship-based UAV[J]. Winged Missiles Journal, 2003(11): 16-19 (in Chinese). 吕小红. 舰载无人机[J]. 飞航导弹, 2003(11): 16-19.
[4] Huang D C, Fan X, Guo M. Research on shipborne UAV system technology[J]. Ship Electronic Engineering, 2008, 28(5): 32-36 (in Chinese). 黄定超, 樊兴, 郭铭. 舰载无人机系统技术研究[J]. 舰船电子工程, 2008, 28(5): 32-36.
[5] Cui M H, Zhou J J, Chen C. Discussing of key technology of UAVs shipborne application[J]. Aeronautical Science and Technology, 2004(5): 31-33 (in Chinese). 崔麦会, 周建军, 陈超. 无人机舰载应用的关键技术探讨[J]. 航空科学技术, 2004(5): 31-33.
[6] Kuang Z G, Liu D C. Review of the development of shipborne UAVs[J]. Winged Missiles Journal, 2003(2): 16-19 (in Chinese). 旷志高, 刘鼎臣. 舰载无人机的发展综述[J]. 飞航导弹, 2003(2): 16-19.
[7] Hong D, Zhou L, Zhang Z S. Research of the development of foreign small-sized shipborne fixed-wing UAV recovery technology[J]. Winged Missiles Journal, 2014(4): 50-54 (in Chinese). 洪达, 周磊, 郑震山. 国外小型舰载固定翼无人机装备回收技术发展研究[J]. 飞航导弹, 2014(4): 50-54.
[8] Li J, Zhu S J, Yue Z Q, et al. The war features and development strategy of American Navy UAV and its inspiration for our navy UAV[C]//The Second Development Forum on UAV. Beijing: International Aviation Magazine, 2006: 268-272 (in Chinese). 李杰, 朱世界, 岳志强, 等. 美国海军无人机的作战特点与发展战略以及对我海军无人机发展的启示[C]//第二届无人机发展论坛论文集. 北京: 国际航空杂志社, 2006: 268-272.
[9] Wu J K, Ma X P, Sun L F. Design of parameters for UAVs rope-hook recovery system[J]. Aeronautical Computing Technique, 2012, 42(3): 92-94 (in Chinese). 吴佳凯, 马晓平, 孙林峰. 无人机绳钩回收系统参数设计[J]. 航空计算技术, 2012, 42(3): 92-94.
[10] Zhang M L. Flight control system[M]. Beijing: Aviation Industry Press, 1994: 17-40 (in Chinese). 张明廉. 飞行控制系统[M]. 北京: 航空工业出版社, 1994: 17-40.
[11] Roberts J W, Cory R, Tedrake R. On the controllability of fixed-wing perching[C]//Proceedings of the 2009 American Control Conference. St. Louis: ACC, 2009: 2018-2023.
[12] Cory R, Tedrake R. Experiments in fixed-wing UAV rerching, AIAA-2008-7256[R]. Reston: AIAA, 2008.
[13] Fang Z P, Chen W C, Zhang S G. Spacecraft flight dynamics[M]. Beijing: Beihang University Press, 2005: 174-183 (in Chinese). 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005: 174-183.
[14] Sun L F, Ma X P, Wu J K. Simulation research of rope-hook recovery for unmanned aerial vehicle[J]. Science Technology and Engineering, 2012, 12(7): 1572-1575 (in Chinese). 孙林峰, 马晓平, 吴佳凯. 无人机绳钩回收仿真研究[J]. 科学技术与工程, 2012, 12(7): 1572-1575.
[15] Gardner G F. Simulations of machines: Using MATLAB and Simulink[M]. Stamford, CT: Thomson Learning Press, 2001: 25-40.
[16] Pei J H. Technology development of UAV net recovery system[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(S): 6-11 (in Chinese). 裴锦华. 无人机撞网回收的技术发展[J]. 南京航空航天大学学报, 2009, 41(增刊): 6-11.
[17] Feng L H. Analysis of static strength for an UAV's wing[D]. Nanchang: Nanchang Hangkong University, 2013 (in Chinese). 冯立华. 某无人机机翼的静强度分析[D]. 南昌: 南昌航空大学, 2013.
[18] Zhang Y M, Zhao P F. Analysis of composite UAV structure[J]. Fiber Reinforced Plastics/Composites, 2003(6): 36-40 (in Chinese). 张元明, 赵鹏飞. 低速小型无人机中的复合材料结构及分析[J]. 玻璃钢/复合材料, 2003(6): 36-40.
[19] An G F, Lv S L, Zhang Q L, et al. Finite element analysis for all composites wings of UAV[J]. Structure & Environment Engineering, 2009, 36(6): 40-44 (in Chinese). 安国锋, 吕胜利, 赵庆兰, 等. 无人机全复合材料机翼的结构有限元分析[J]. 强度与环境, 2009, 36(6): 40-44.
[20] Yin X Y, Feng Z Y, Lu X. Finite element analysis of composite wing for unmanned aerial vehicle based on MSC.Nastran[J]. Fiber Reinforced Plastics/Composites, 2010(1): 3-6 (in Chinese). 尹星研, 冯振宇, 卢翔. 基于MSC.Nastran的无人机复合材料机翼有限元分析[J]. 玻璃钢/复合材料, 2010(1): 3-6.
/
〈 | 〉 |