任意回转流面内叶型几何生成方法
收稿日期: 2014-10-10
修回日期: 2014-12-07
网络出版日期: 2014-12-23
基金资助
国家自然科学基金 (51075021)
Geometric generating method of blade profiles on arbitrary rotary flow surfaces
Received date: 2014-10-10
Revised date: 2014-12-07
Online published: 2014-12-23
Supported by
National Natural Science Foundation of China (51075021)
传统的叶型设计方法对流道内的流面一般采用平面、柱面或锥面进行流面简化。提出了一种任意回转流面内的叶型几何生成方法,该方法基于中弧线加厚度分布的方式生成叶型。首先,在流面内生成中弧线,中弧线上的点可以看作由定义的基叠点开始,沿着子午面流线移动一段距离和沿周向回转一定弧长得到的,将中弧线分段,求得一系列回转流面内中弧线上的点;然后,在流面内加上厚度分布,获得叶盆和叶背曲线。基于叶盆、叶背曲线在前、尾缘处关于中弧线对称的假设,给出了一种兼容圆形和椭圆形前、尾缘造型方法,生成前、尾缘后通过调整叶盆、叶背曲线的起点、终点位置和切矢,保证连接处G1连续。使用MFC和NX8.0联合开发的方式,开发出了叶片快速造型系统,实现了回转流面内的叶型几何设计,与锥面内的叶型对比表明该方法生成的叶型更符合气流流动趋势。
杨炯 , 宁涛 , 席平 . 任意回转流面内叶型几何生成方法[J]. 航空学报, 2015 , 36(10) : 3483 -3493 . DOI: 10.7527/S1000-6893.2014.0336
Generally, flow surfaces are reduced to planes, cylindrical surfaces or conical surfaces in traditional blade profile design method. A blade profiles geometric design method on arbitrary rotary flow surfaces is presented. In this method, blade's profiles are generated by traditionally distributing thickness along a camber line method. First, a camber line is generated on the flow surface. Points on the camber line are obtained by stacking point moving along meridional streamline at a distance and rotating circumferentially at the same time. The camber line is divided into series of segments, and arrays of points on flow surface are acquired. Then, thickness on each point is distributed, obtaining pressure line and suction line. Based on the assumptions of the symmetry of pressure and suction line about camber line at the leading edge and trailing edge point, a leading edge and trailing edge generating method is presented. After an elliptical or circular leading edge and trailing edge is created, by adjusting the position and tangent vector of the starting point and end point of suction line and pressure line, G1 continuity at junction points can be guaranteed. A blade geometric modeling system has been developed using MFC and NX8.0. The goal of generating blade profiles on arbitrary rotary flow surfaces is achieved. Compared with airfoils generating on conical surfaces, airfoils generated by this method is closer to airflow trend in flow passage.
[1] Frost G R, Wennerstrom A J. The design of axial compressor airfoils using arbitrary chamber lines[R]. Wright-Patterson AFB: Aerospace Research Labs, 1973.
[2] Xiao M, Liu B. A study on geometric methods for designing supersonic aerofoil of axial flow compressor[J]. Journal of Aerospace Power, 2000, 15(3): 237-240 (in Chinese). 肖敏, 刘波. 轴流压气机超音叶片叶型几何设计方法的研究[J]. 航空动力学报, 2000, 15(3): 237-240.
[3] Ji G F, Gui X M. A blading design method for axial/centrifugal compressor airfoils using arbitrary camber lines [J]. Journal of Aerospace Power, 2009, 24(1): 150-156 (in Chinese). 冀国锋, 桂幸民. 轴流/离心压气机叶片通用任意中弧造型设计方法[J]. 航空动力学报, 2009, 24(1): 150-156.
[4] Ma W S. Investigation of multistage axial-compressor aerodynamic optimization design[D]. Beijing: Tsinghua University, 2009 (in Chinese). 马文生. 多级轴流压气机气动优化设计研究[D]. 北京: 清华大学, 2009.
[5] Qiu M, Zhou Z G, Liu L L, et al. Supersonic compressor blade profile design method [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 975-985 (in Chinese). 邱名, 周正贵, 刘龙龙, 等. 超声压气机叶型设计方法[J]. 航空学报, 2014, 35(4): 975-985.
[6] Bruna D, Cravero C. Modeling the aerodynamic performance of modern axial flow compressor profiles: A correlative approach using current CFD technology[C]//Proceedings of 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
[7] Bruna D, Cravero C. A CFD suite for design and performance prediction of single and multistage axial flow compressors[C]//Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Intermal Flows Lyon, 2007: 1-7.
[8] Briasco G, Bruna D, Cravero C. A NURBS-based optimization tool for axial compressor cascades at design and off-design conditions[C]//ASME Turbo Expo 2008: Power for Land, Sea, and Air. Berlin: American Society of Mechanical Engineers, 2008: 2425-2434.
[9] Koini G N, Sarakinos S S, Nikolos I K. A software tool for parametric design of turbomachinery blades[J]. Advances in Engineering Software, 2009, 40(1): 41-51.
[10] Korakianitis T, Rezaienia M A, Hamakhan I A, et al. Two- and three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method for the design of high efficiency turbines, compressors, and isolated airfoils[J]. Journal of Turbomachinery, 2013, 135(4): 041002.
[11] Korakianitis T, Hamakhan I A, Rezaienia M A, et al. Design of high-efficiency turbomachinery blades for energy conversion devices with the three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method[J]. Applied Energy, 2012, 89(1): 215-227.
[12] Li L, Li L Z, Ao L B, et al. 14 parameters cascade design method with curvature optimization[J]. Journal of Propulsion Technology, 2013, 34(1): 37-41 (in Chinese). 李磊, 李立州, 敖良波, 等. 基于曲率优化的 14 参数平面叶栅设计方法[J]. 推进技术, 2013, 34(1): 37-41.
[13] Liu W W, Zhang D H, Bai Y, et al. Research on rectification technology of parametric grid distortion in blades modeling process[J]. Machine Tool & Hydraulics, 2004(1): 65-67 (in Chinese). 刘维伟, 张定华, 白瑀, 等. 叶片造型网格扭曲的校正方法研究[J]. 机床与液压, 2004(1): 65-67.
[14] Bai Y, Zhang D H, Ren X J, et al. High quality geometric modeling of blades[J]. Mechanical Science and Technology, 2003, 22(3): 447-449 (in Chinese). 白瑀, 张定华, 任军学, 等. 叶片高质量造型方法研究[J]. 机械科学与技术, 2003, 22(3): 447-449.
[15] Editorial Board of Aircraft Engine Design Manual. Aircraft engine design manual volume 8: Compressor [M]. Beijing: Aviation Industry Press, 2000: 109-114 (in Chinese). 《航空发动机设计手册》总编委会. 航空发动机设计手册第8册: 压气机[M]. 北京: 航空工业出版社, 2000: 109-114.
[16] Pachidis V, Pilidis P, Talhouarn F, et al. A fully integrated approach to component zooming using computational fluid dynamics[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3): 579-584.
[17] Benini E, Biollo R. Aerodynamics of swept and leaned transonic compressor-rotors[J]. Applied Energy, 2007, 84(10): 1012-1027.
[18] Liu B J, Yuan C X, Yu X J. Effects of leading-edge geometry on aerodynamic performance in controlled diffusion airfoil [J]. Journal of Propulsion Technology, 2013, 34(7): 890-897 (in Chinese). 刘宝杰, 袁春香, 于贤君. 前缘形状对可控扩散叶型性能影响[J]. 推进技术, 2013, 34(7): 890-897.
[19] Wheeler A P S, Sofia A, Miller R J. The effect of leading-edge geometry on wake interactions in compressors[J].Journal of Turbomachinery, 2009, 131(4): 041013.
[20] Hamakhan I A, Korakianitis T. Aerodynamic performance effects of leading-edge geometry in gas-turbine blades[J]. Applied Energy, 2010, 87(5): 1591-1601.
/
〈 | 〉 |