空中加油软管锥套组合体甩鞭现象动力学建模与分析
收稿日期: 2014-09-09
修回日期: 2014-12-11
网络出版日期: 2014-12-18
基金资助
国家自然科学基金 (61473307); 空军工程大学优秀博士学位论文扶持基金 (KGD 081114006)
Dynamics modeling and analysis of hose whipping phenomenon of aerial refueling hose-drogue assembly
Received date: 2014-09-09
Revised date: 2014-12-11
Online published: 2014-12-18
Supported by
National Natural Science Foundation of China (61473307); Excellent Doctoral Dissertation Foundation of the AFEU (KGD 081114006)
软管锥套组合体特殊的刚-柔-液耦合结构使其甩鞭现象动力学特性极为复杂,尚无法准确建模分析,严重制约了现有抑制措施的有效性,大大限制了空中加油对接的成功率和安全性。为分析甩鞭现象的动力学特性,基于集中参数的多刚体动力学,提出一种包含软管弹性且长度可变的软管锥套组合体运动模型。软管被抽象为由无摩擦铰链相互串联的若干变长度刚性连杆,各连杆质量和受力假设集中于铰链处。同时考虑软管弯曲恢复力、软管收放、加油机牵连运动、重力、定常流、大气扰动以及加油机尾流等内外部因素,推导出迭代形式的软管锥套组合体运动方程。通过数值仿真,对不同对接速度、不同软管长度和恒力弹簧控制方式等因素对甩鞭现象动力学特性的影响进行分析。结果表明,在对接速度柔和、软管长度较长时,对接诱发的甩鞭现象程度较轻。恒力弹簧控制方式诱发类似简谐振动形式的甩鞭现象,根源在于软管收放控制范围有限,回卷滞后性明显无法匹配受油机对接速度。
王海涛 , 董新民 , 郭军 , 刘娇龙 , 王健 . 空中加油软管锥套组合体甩鞭现象动力学建模与分析[J]. 航空学报, 2015 , 36(9) : 3116 -3127 . DOI: 10.7527/S1000-6893.2014.0343
Hose whipping phenomenon has been a serious constraint to the success rate and security of aerial refueling. Dynamics of the hose whipping phenomenon is extremely complex due to the rigid-flexibility-liquid-coupled structure, and there is no accurate modeling and analysis methods which restricts the effectiveness of the existing suppression methods. To analyze the dynamic characteristics of the hose whipping phenomenon, based on lumped parameter rigid multi-body dynamics, a dynamic model of the elastic and variable-length hose-drogue assembly is built. The hose is modeled by a sequence of variable-length links connected with frictionless joints, and the masses and loads of each link are concentrated at the joints. A set of governing equations of motion is recursively derived subject to internal and external factors, such as hose restoring force due to bending, reeling in/out of hose, tanker transport motion, gravity, steady wind, atmospheric turbulence and tanker wake. The effects of factors of different closure speed profiles, different hose lengths and the tensator control on dynamics of the hose whipping phenomenon are analyzed by simulation. The results show that the degree of the hose whipping phenomenon induced by coupling is lower when the closure speed profile is gentler and the hose length is shorter. The dominating reasons why the tensator arouses the simple harmonic vibration-typed hose whipping phenomenon lie in the limited control range of the hose length, the time-lag effect of control and mismatch the closure speed of the receiver.
[1] Dong X M, Xu Y J, Chen B. Progress and challenges in automatic aerial refueling[J]. Journal of Air Force Engineering University: Natural Science Edition, 2008, 9(6): 1-5 (in Chinese). 董新民, 徐跃鉴, 陈博. 自动空中加油技术研究进展与关键问题[J]. 空军工程大学学报: 自然科学版, 2008, 9(6): 1-5.
[2] Quan Q, Wei Z B, Gao J, et al. A survey on modeling and control problems for probe & drogue autonomous aerial docking[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2390-2410 (in Chinese). 全权, 魏子博, 高俊, 等. 软管式自主空中加油对接阶段中的建模与控制综述[J]. 航空学报, 2014, 35(9): 2390-2410.
[3] Lu Y P, Yang C X, Liu Y Y. A survey of modeling and control technologies for aerial refueling system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2375-2389 (in Chinese). 陆宇平, 杨朝星, 刘洋洋. 空中加油系统的建模与控制技术综述[J]. 航空学报, 2014, 35(9): 2375-2389.
[4] Vassberg J C, Yeh D T, Blair A J, et al. Dynamic characteristics of a KC-10 wing-pod refueling hose by numerical simulation, AIAA-2002-2712[R]. Reston: AIAA, 2002.
[5] Wang H T, Qin Z Z, Song X M, et al. Analysis of the phenomenon of bull whipping in the deployment process of large parachute[J]. Journal of National University of Defense Technology, 2010, 32(5): 34-38 (in Chinese). 王海涛, 秦子增, 宋旭民, 等. 大型降落伞拉直过程中的抽打现象分析[J]. 国防科技大学学报, 2010, 32(5): 34-38.
[6] Hensen J H, Murray J E, Campos N V. The NASA dryden flight test approach to an aerial refueling system, NASA/TM-2005-212859[R]. Washington, D.C.: NASA, 2005.
[7] Zhu Z H, Meguid S A. Elastodynamic analysis of aerial refueling hose using curved beam element[J]. AIAA Journal, 2006, 44(6): 1317-1324.
[8] Vachon M J, Ray R J. Calculated drag of an aerial refueling assembly through airplane performance analysis, NASA/TM-2004-212043[R]. Washington, D.C.: NASA,2004.
[9] Vassberg J C, Yeh D T, Blair A J, et al. Numerical simulation of KC-10 aerial refueling hose-drogue dynamics with areel take-up system[C]//Proceedings of the 21st Applied Aerodynamics Conference. Reston: AIAA, 2003: 1-22.
[10] Vassberg J C, Yeh D T, Blair A J, et al. Numerical simulations of KC-10 centerline aerial refueling hose-drogue dynamics with a reel take-up system[C]//Proceedings of the 22nd Applied Aerodynamics Conference. Reston: AIAA, 2004: 1-19.
[11] Vassberg J C, Yeh D T, Blair A J, et al. Numerical simulation of KC-10 in-flight refueling hose-drogue dynamics with an approaching F/A-18D receiver aircraft[C]//Proceedings of the 23rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2005: 1-23.
[12] Eichler J. Dynamic analysis of an tn-flight refueling system[J]. Journal of Aircraft, 1978, 15(5): 311-318.
[13] Zhu Z H, Meguid S A. Elastodynamic analysis of low tension cables using a new curved beam element[J]. International Journal of Solids and Structures, 2007, 43: 1490-1504.
[14] Ribbens W B, Saggio F, Wierenga R, et al. Dynamic modeling of an aerial refueling hose & drogue system[C]//Proceedings of the 25th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2007: 1-10.
[15] Hu M Q, Nie X, Wang L M. Determination of hose static catenary shape in probe-drogue in-flight refueling system[J]. Journal of Air Force Engineering University: Natural Science Edition, 2009, 10(5): 22-26 (in Chinese). 胡孟权, 聂鑫, 王丽明. 插头-锥管式空中加油软管平衡拖曳位置计算[J]. 空军工程大学学报: 自然科学版, 2009, 10(5): 22-26.
[16] Hu M Q, Liu P, Nie X, et al. Influence of airturbulence on the movement of hose-drogue[J]. Flight Dynamics, 2010, 28(5): 20-23 (in Chinese). 胡孟权, 柳平, 聂鑫, 等. 大气紊流对空中加油软管锥套运动的影响[J]. 飞行力学, 2010, 28(5): 20-23.
[17] Ro K, Kamman J W. Modeling and simulation of hose-paradrogue aerial refueling systems[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 53-63.
[18] Ro K, Kuk T, Kamman J W. Dynamics and control of hose-drogue refueling systems during coupling[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(6): 1694-1708.
[19] Wang H T, Dong X M, Dou H F, et al. Dynamic modeling and characteristics analysis of hose-paradrogue aerial refueling systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 92-98 (in Chinese). 王海涛, 董新民, 窦和锋, 等. 软管锥套式空中加油系统建模与特性分析[J]. 北京航空航天大学学报, 2014, 40(1): 92-98.
[20] Wang H T, Dong X M, Xue J P, et al. Dynamic modeling of a hose-drogue aerial refueling system and integral sliding mode backstepping control for the hose whipping[J]. Chinese Journal of Aeronautics, 2014, 27(4): 930-946.
[21] Dogan A, Lewis T A, Blake W. Flight data analysis and simulation of wind effects during aerial refueling[J]. Journal of Aircraft, 2008, 45(6): 2036-2048.
/
〈 | 〉 |