流体力学与飞行力学

纳秒脉冲等离子体激励控制小后掠三角翼低速绕流试验

  • 赵光银 ,
  • 梁华 ,
  • 李应红 ,
  • 韩孟虎 ,
  • 化为卓
展开
  • 空军工程大学 航空等离子体动力学实验室, 西安 710038
赵光银 男, 博士研究生。主要研究方向: 等离子体流动控制技术。 Tel: 029-84787527 E-mail: zym19860615@163.com;李应红 男, 硕士, 教授, 博士生导师。主要研究方向: 等离子体流动控制。 Tel: 029-84787527 E-mail: yinghong_li@126.com;韩孟虎 男, 博士研究生。主要研究方向: 等离子体流动控制技术。 Tel: 029-84787527 E-mail: gratetigerhan@163.com

收稿日期: 2014-09-02

  修回日期: 2014-12-10

  网络出版日期: 2014-12-15

基金资助

国家自然科学基金 (51336011, 51276197, 51207169)

Experiment of flow control on a low swept delta wing using pulsed nanosecond plasma actuation

  • ZHAO Guangyin ,
  • LIANG Hua ,
  • LI Yinghong ,
  • HAN Menghu ,
  • HUA Weizhuo
Expand
  • Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China

Received date: 2014-09-02

  Revised date: 2014-12-10

  Online published: 2014-12-15

Supported by

National Natural Science Foundation of China (51336011, 51276197, 51207169)

摘要

为探索纳秒脉冲介质阻挡放电(NS DBD)对小后掠尖前缘三角翼的流动控制效果和作用机理,进行NS DBD用于改善其气动特性的测力试验和流动显示试验。当来流速度分别为30 m/s和45 m/s时,测力试验结果表明位于机翼前缘的NS DBD能很好地改善三角翼大迎角气动特性,其中来流速度为45 m/s时最大升力系数提高了18.3%;研究了脉冲激励频率对流动控制效果的影响规律,最佳的无量纲激励频率F+≈1~2。在来流速度为20 m/s时,采用粒子图像测速仪(PIV)研究了不同迎角下激励前后机翼背风面流场,表明NS DBD可改善上翼面旋涡结构,使分离涡附体并得到加强。基于试验结果,认为NS DBD进行三角翼前缘涡控制的机理是激励诱导分离剪切层周期性产生附体的分离涡,从而维持了上翼面大迎角时的涡升力。

本文引用格式

赵光银 , 梁华 , 李应红 , 韩孟虎 , 化为卓 . 纳秒脉冲等离子体激励控制小后掠三角翼低速绕流试验[J]. 航空学报, 2015 , 36(7) : 2125 -2132 . DOI: 10.7527/S1000-6893.2014.0341

Abstract

In order to explore the flow control effect and mechanism of nanosecond dielectric barrier discharge (NS DBD) on the low swept delta wing with sharp leading edge, force measurements and flow visualization experiments are conducted on a 30° swept delta wing. When the flow speed is 30 m/s and 45 m/s, it is found that leading-edge plasma actuation can significantly improve the aerodynamics of delta wing at a high angle of attack, with the maximum lift coefficient increased by about 18.3%. The influence law of the actuation frequency on the control effect is investigated, that is the optimum reduced frequency of F+≈1 to 2. When the flow speed is 20 m/s, particle image velocimetry (PIV) measurement is conducted to investigate the formation of leading edge vortices affected by the pulsed NS DBD at different angles of attack. The flow pattern obtained from the PIV measurement shows that flow reattachment is promoted by excitation, and an intensified vortex flow pattern develops. Based on the experimental results, it is supposed that the reforming of leading-edge vortex, resulting from periodic emanation of small-scale vortices moving along the shear layer due to the pulsed actuation, may be the mechanism.

参考文献

[1] Li Y H, Liang H, Ma Q Y, et al. Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1429-1435 (in Chinese). 李应红, 梁华, 马清源,等. 脉冲等离子体气动激励抑制翼型吸力面流动分离的试验研究[J]. 航空学报, 2008, 29(6): 1429-1435.
[2] Li Y H, Wu Y, Liang H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability[J]. Chinese Science Bulletin (Chinese Ver), 2010, 55(31): 3060-3068 (in Chinese). 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31): 3060-3068.
[3] Rethmel C, Little J, Takashima K, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators, AIAA-2011-0487[R]. Reston: AIAA,2011.
[4] Roupassov D V, Nikipelov A A, Nudnova M M,et al.Flow separation control by plasma actuator with nanosecond pulse periodic discharge, AIAA-2008-1367[R]. Reston: AIAA, 2008
[5] Bisek N J, Poggie J, Nishihara M, et al. Computational and experimental analysis of Mach 5 air flow over a cylinder with a nanosecond pulse discharge, AIAA-2012-0186 [R]. Reston: AIAA, 2012
[6] Ni F Y, Shi Z W, Du H. Numerical simulation of nanosecond pulsed plasma actuator for cylindrical high-speed flow control[J]. Acta Aeronautica et Astronautica Sinica, 2014, (35)3: 657-665 (in Chinese). 倪芳原, 史志伟, 杜海. 纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟[J].航空学报,2014,(35)3: 657-665.
[7] Kwak D Y, Nelson R C. Vortical flow control over delta wings with different sweep back angles using DBD plasma actuators, AIAA-2010-4837[R]. Reston: AIAA, 2010.
[8] Greenblatt D, Kastantin Y, Nayeri C N, et al. Delta-wing flow control using dielectric barrier discharge actuators[J]. AIAA Journal, 46(6): 1554-1560.
[9] Sidorenko A A, Budovskiy A D, Maslov A A, et al. Plasma control of vortex flow on a delta wing at high angles of attack[J]. Experiments in Fluids, 2013, 54: 1585.
[10] Zhang P F, Wang J J, Feng L H, et al. Experimental study of plasma flow control on highly swept delta wing[J]. AIAA Journal, 2010, 48(1): 249-252.
[11] Hua W Z, Li Y H, Niu Z G, et al. Experiment on low-speed delta wing using pulse nanosecond plasma actuation[J]. Journal of Aerospace Power, 2014, 10(29): 2331-2339 (in Chinese). 化为卓, 李应红, 牛中国, 等. 低速三角翼纳秒脉冲等离子体激励试验[J].航空动力学报,2014, 10(29): 2331-2339.
[12] Zhao G Y, Li Y H, Liang H, et al. Control of vortex on a non-slender delta wing by a nanosecond pulse surface dielectric barrier discharge[J]. Experiments in Fluids, 2015, 56: 1864.
[13] Zhao G Y, Li Y H, Hua W Z, et al. Experimental study of flow control on delta wings with different sweep angles using pulsed nanosecond DBD plasma actuators[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 0(0): 1-9.
[14] Greenblatt D, Washburn A. Influence of finite span and sweep on active flow control efficacy[J]. AIAA Journal, 2008, 46(7): 1675-1694.

文章导航

/