转速优化旋翼的桨叶气动外形参数优化设计
收稿日期: 2014-09-22
修回日期: 2014-11-24
网络出版日期: 2014-12-15
基金资助
江苏省普通高校研究生科研创新计划 (CXLX13_164); 中央高校基本科研业务费专项资金; 航空科学基金 (2013ZA52014)
Optimal design for aerodynamic shape parameters of optimum speed rotor
Received date: 2014-09-22
Revised date: 2014-11-24
Online published: 2014-12-15
Supported by
Funding of Jiangsu Innovation Program for Graduate Education (CXLX13_164); The Fundamental Research Funds for the Central Universities; Aeronautical Science Foundation of China (2013ZA52014)
为了获得转速优化旋翼桨叶的最优气动外形,采用自由尾迹方法计算旋翼入流,以叶素积分法计算桨叶气动力,建立了旋翼气动分析模型,为了保证计算精度及效率,旋翼配平计算采用了二次配平方法。首先分析了不同桨叶气动外形参数对旋翼性能的影响,再利用遗传算法,以悬停效率和前飞需用功率为目标,对转速优化旋翼桨叶的气动外形进行优化设计,得出了转速优化旋翼桨叶的最优气动外形方案。在最优方案的基础上,采用区间因子法分析桨叶外形参数变化对旋翼效率影响的敏感度,根据敏感度值验证了方案的最优性。最后根据设计的最优桨叶气动外形方案,研制了桨叶试验模型,进行了风洞吹风试验,试验结果表明最优桨叶气动外形能使转速优化旋翼的悬停与前飞性能指标达到理论预期值,从而验证了转速优化旋翼桨叶最优气动外形设计的有效性。
徐明 , 李建波 , 韩东 . 转速优化旋翼的桨叶气动外形参数优化设计[J]. 航空学报, 2015 , 36(7) : 2133 -2144 . DOI: 10.7527/S1000-6893.2014.0322
An analytical model of rotor aerodynamics has been established in order to achieve the optimal aerodynamic shape parameters of optimum speed rotor; with the model, we computed induced velocity by free-wake theory and calculated rotor aerodynamics by blade element theory. Meanwhile, accuracy and efficiency of this model were guaranteed by using secondary trim method. With the above-mentioned model, we further analyzed the influence of different blade aerodynamic shape parameters on the rotor performance. Using genetic algorithm, aimed at hover efficiency and forward flight required power, we carried out the optimal design for aerodynamic shape parameters of optimum speed rotor and obtained the optimal solution. Then based on the optimal solution, we analyzed the influence of blade shape parameters on the rotor performance sensitivity by interval factor method. The sensitivity value demonstrated the optimality of the solution. Finally, having built the blade model and carried out the wind tunnel test, the results of the test show that optimal design for aerodynamic shape parameters can make hover and forward flight performance of rotor reach the theoretical calculation values, which verify the effectiveness of the optimal design for aerodynamic shape parameters of optimum speed rotor.
Key words: optimum speed rotor; free wake; aerodynamic shape; rotor; optimal design
[1] Steiner J, Gandhi F, Yoshizaki Y. An investigation of variable rotor RPM on performance and trim[C]//Proceedings of the American Helicopter Society 64th Annual Forum. Montreal, Canada: [s.n.], 2008.
[2] Graham B D, Inderjit C. Aeromechanics of a variable speed rotor[C]//Proceedings of the American Helicopter Society 67th Annual Forum. Virginia Beach, Virginia: [s.n.], 2011.
[3] Ben B, Inderjit C. Wind tunnel testing for performance and vibratory loads of a variable speed mach scale rotor[C]//Proceedings of the American Helicopter Society 67th Annual Forum. Virginia Beach, Virginia: [s.n.], 2011.
[4] Walsh J L, Bingham G J, Riley M F. Optimization methods applied to the aerodynamic design of helicopter rotor blade[J]. Journal of AHS, 1987, 32(6):39-44.
[5] Kumar S, Bassett D. Rotor performance optimization for future light helicopters[C]//Proceedings of the American Helicopter Society 43th Annual Forum. Louis, Missouri: [s.n.], 1987.
[6] Pomin H, Wagner S. Navier-Stokes analysis of helicopter rotor aerodynamic in hover and forward flight[J]. Journal of Aircraft, 2002, 39(5): 813-821.
[7] Tan J F, Wang H W, Lin C L. Analysis on influence of rotor parameters on rotor hover performance by lifting-surface and free wake method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 249-257 (in Chinese). 谭剑锋, 王浩文, 林长亮. 基于面自由尾迹的直升机旋翼悬停性能参数影响研究[J]. 航空学报, 2012, 33(2): 249-257.
[8] Sun W, Zhang C L. Multi-objective optimization for aerodynamic shape of helicopter blade[J]. Journal of Aerospace Power, 2011, 26(7): 1608-1614 (in Chinese). 孙伟, 张呈林. 直升机桨叶气动外形多目标优化设计[J]. 航空动力学报, 2011, 26(7): 1608-1614.
[9] Wang B, Zhao Q J, Xu G H. Numerical optimization of helicopter rotor twist distribution in hover[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1163-1172 (in Chinese). 王博, 招启军, 徐国华. 悬停状态直升机桨叶扭转分布的优化数值计算[J]. 航空学报, 2012, 33(7): 1163-1172.
[10] Bagai A. Contributions to the mathematical modeling of rotor flow-fields using a pseudo-implicit free-wake analysis[D]. College Park, Maryland: University of Maryland, 1995.
[11] Crouse G L, Leishman J G. A new method for improved rotor free-wake convergence, AIAA-19A93-0872[R]. Reston: AIAA, 1993.
[12] Bagai A, Leishman J G. Rotor free-wake modeling using a pseudo-implicit technique-including comparisons with experimental data[J]. Journal of AHS, 1995, 40(3): 29-41.
[13] Bagai A, Leishman J G. Rotor free-wake modeling using a pseudo-implicit algorithm[J]. Journal of Aircraft, 1995, 32(6): 1276-1285.
[14] Caradonna F X, Tung C. Experimental and analytical studies of a model helicopter rotor in hover, NASA-TM-81232[R]. Moffett Field: NASA Ames Research Center, 1980.
[15] Wayne R J. Wake model for helicopter rotors in high speed flight, NASA-CR-177507[R]. Washington, D.C.: NASA, 1988.
[16] Brocklehurst A, Barakos G N. A review of helicopter rotor blade tip shapes[J]. Aerospace Sciences, 2013, 56(1): 35-74.
[17] Berry J. Quarter scale testing of an advanced rotor system for the UH-1 helicopter[C]//Proceedings of the American Helicopter Society 37th Annual Forum. New Orleans, Louisiana: [s.n.], 1981.
[18] Wang M Q, Guo C G. Helicopter optimization design[M]. Nanjing: Nanjing University of Aeronautics and Astronautics Press, 1993: 84-111 (in Chinese). 王幕强, 郭才根. 直升机优化设计[M]. 南京: 南京航空航天大学出版社, 1993: 84-111.
[19] Yang Y J, Chen J J, Ma J, et al. Analysis of reliability and parametric sensitivity based on interval factor method[J]. Journal of Mechanical Strength, 2009, 31(2): 236-239 (in Chinese). 杨宇军, 陈建军, 马娟, 等. 基于区间因子法的可靠度与参数敏感度分析[J]. 机械强度, 2009, 31(2): 236-239.
[20] Xu M, Han D, Li J B. Analysis and experimental investigation on the aerodynamic characteristics of variable speed rotor[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2047-2056 (in Chinese). 徐明, 韩东, 李建波. 变转速旋翼气动特性分析及试验研究[J]. 航空学报, 2013, 34(9): 2047-2056.
/
〈 |
|
〉 |