飞机操稳特性大导数辨识及随机噪声影响分析
收稿日期: 2014-08-27
修回日期: 2014-12-01
网络出版日期: 2014-12-11
Identification of aircraft stability and control characteristics derivatives and analysis of random noises
Received date: 2014-08-27
Revised date: 2014-12-01
Online published: 2014-12-11
针对飞机研制中操稳特性需求,分别讨论了小扰动理论和参数辨识两种获得飞机稳定和操纵大导数的分析手段,由两种气动布局比较接近的小型无人机ANCE和大型客机Boeing 747数据验证了参数辨识方法的有效性和辨识结果的正确性。在此基础上对两者进行了大导数辨识,并由Monte Carlo仿真分析了飞行试验测量中的随机噪声对大导数辨识精度和模态响应特征值的影响。结果表明:随机噪声对由飞机固有气动特性决定的一些相对较小的大导数辨识精度影响较大,而部分大导数辨识精度较高;随机噪声对长周期和螺旋模态特征值影响较大,短周期、荷兰滚和滚转模态特征值辨识分析结果较为可信。
丁娣 , 钱炜祺 , 汪清 . 飞机操稳特性大导数辨识及随机噪声影响分析[J]. 航空学报, 2015 , 36(7) : 2177 -2185 . DOI: 10.7527/S1000-6893.2014.0332
Small perturbation theory and parameter identification method are applied to obtaining the stability and control derivatives of an airplane. To accomplish the stability and control characteristics analysis during the airplane design, we develop the parameter identification algorithm, which are validated with data of an unmanned airplane vehicle ANCE and a Boeing transport airplane Boeing 747. Firstly, we estimate the stability and control derivatives of the airplanes and compare them with the small perturbation theory results. Then the accuracy of the estimated derivatives and the dispersion of the eigenvalues of different response modes are quantitatively analyzed by Monte Carlo simulation based on the known measurement noises during the flight test. The estimating accuracy of certain relatively small derivatives, which are dominated by airplanes' inherent aerodynamic characteristics, degenerates with these noises. The response eigenvalues of short-period mode, Dutch-roll mode and roll mode under random noises can be accurately acquired with the parameter identification algorithm presented here, while the response eigenvalues of phugoid mode and spiral mode are more sensitive to noises.
[1] Roskam J. Evolution of airplane stability and control: a designer's viewpoint[J]. J. GUIDANCE, 1991, 14(3): 481-491.
[2] Yu J C. Flight data processing and aerodynamic parameter identification[D]. Xi'an: Northwestern Polytechnical University, 2007 (in Chinese). 于君彩. 飞行数据处理与气动参数辨识[D]. 西安: 西北工业大学, 2007.
[3] Cardenas E M, Boschetti P J, Amerio A, et al. Design of an unmanned aerial vehicle for ecological conservation, AIAA-2005-7056[R]. Reston: AIAA, 2005.
[4] Boschetti P J, Cardenas E M, Amerio A. Stability of an unmanned airplane using a low-order panel method, AIAA-2010-8121[R]. Reston: AIAA, 2010.
[5] Biber K. Stability and control characteristics of a new FAR23 airplane, AIAA-2006-0255[R]. Reston: AIAA, 2006.
[6] Mehra R K, Stepner D E, Tyler J S. Maximum likelihood identification of aircraft stability and control derivatives[J]. Journal of Aircraft, 1974, 11(2): 81-89.
[7] Speyer J L, Crues E Z. On-line aircraft state and stability derivative estimation using the modified-gain extended Kalman filter[J]. J. GUIDANCE, 1987, 10(3): 262-268.
[8] Tang S J. Three-lifting-surface aircraft disturbance motion linearized model[J]. Flight Dynamics, 2005, 23(1): 27-30 (in Chinese). 唐胜景. 三升力面飞机扰动运动线性化模型[J]. 飞行力学, 2005, 23(1): 27-30.
[9] Yang F, Xiong X, Chen Z J, et al. Modeling system identification and validation of small rotorcraft-based unmanned aerial vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 913-917 (in Chinese). 杨帆, 熊笑, 陈宗基, 等. 超小型直升机动力学模型的建模、辨识与验证[J]. 北京航空航天大学学报, 2010, 36(8): 913-917.
[10] Houston S S. Identification of autogyro longitudinal stability and control characteristics[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(3): 391-399.
[11] Rauch H E, Tung F, Striebel C T. Maximum likelihood estimates of linear dynamic systems[J]. AIAA Journal, 1965, 3(8): 1445-1450.
[12] Oshman Y, Mendelboim T. Maximum likelihood identification and realization of stochastic systems[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(4): 692-700.
[13] West N, Swiler L. Parameter estimation via Gaussian processes and maximum likelihood estimation, AIAA-2010-2851[R]. Reston: AIAA, 2010.
[14] Duong V, Stubberud A R. System identification by genetic algorithm[C]//Aerospace Conference Proceedings. Piscataway, NJ: IEEE Press, 2002: 2331-2337.
[15] Qian W Q, Wang Q, Wang W Z, et al. Application of genetic algorithms for aerodynamic parameter estimation[J]. Acta Aerodynamica Sinica, 2003, 21(2): 196-201 (in Chinese). 钱炜祺, 汪清, 王文正, 等. 遗传算法在气动力参数辨识中的应用[J]. 空气动力学学报, 2003, 21(2): 196-201.
[16] Zhang T J, Wang Q, He K F. Application of particle swarm optimization for aerodynamic parameter estimation[J]. Acta Aerodynamica Sinica, 2010, 28(6): 633-638 (in Chinese). 张天姣, 汪清, 何开锋. 粒子群算法在气动力参数辨识中的应用[J]. 空气动力学学报, 2010, 28(6): 633-638.
[17] Roundbari A, Saghafi F. Intelligent modeling and identification of aircraft nonlinear flight[J]. Chinese Journal of Aeronautics, 2014, 27(4): 759-771.
[18] Marwaha M, Valasek J, Singla P. GLOMAP approach for nonlinear system identification of aircraft dynamics using flight data, AIAA-2008-6895[R]. Reston: AIAA, 2008.
[19] Viana F, Maciel B, Neto N, et al. Aircraft longitudinal stability and control derivatives identification by using life cycle and Levenberg-Marquardt optimization algorithms[J]. Inverse Problems in Science and Engineering, 2009, 17(1): 17-34.
[20] Etkin B, Reid L. Dynamics of flight: stability and control[M]. New York: John Wiley & Sons, 1995: 129-258.
[21] Klein V, Morelli E A. Aircraft system identification theory and practice[M]. Reston: AIAA, 2006: 181-200.
/
〈 | 〉 |