电子与控制

基于张量正则分解的时频混叠信号欠定盲分离方法

  • 艾小凡 ,
  • 罗勇江 ,
  • 赵国庆
展开
  • 西安电子科技大学 电子信息攻防对抗与仿真技术教育部重点实验室, 西安 710071
艾小凡 男, 博士研究生。主要研究方向: 电子侦察与信息对抗, 多维信号处理。 Tel: 029-88202274 E-mail: xiaofan_ai88@163.com;罗勇江 男, 博士, 副教授, 硕士生导师。主要研究方向: 电子侦察与信息对抗, 宽带实时信号处理。 Tel: 029-88202274 E-mail: yjluo@mail.xidian.edu.cn;赵国庆 男, 硕士, 教授, 博士生导师。主要研究方向: 电子侦察与信息对抗, 雷达信号处理。 Tel: 029-88202274 E-mail: guoqzhao@mail.xidian.edu.cn

收稿日期: 2014-09-22

  修回日期: 2014-11-19

  网络出版日期: 2014-11-24

基金资助

中央高校基本科研业务费专项资金 (K5051302018)

Canonical decomposition approach for underdetermined blind separation of non-disjoint sources

  • AI Xiaofan ,
  • LUO Yongjiang ,
  • ZHAO Guoqing
Expand
  • Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education, Xidian University, Xi'an 710071, China

Received date: 2014-09-22

  Revised date: 2014-11-19

  Online published: 2014-11-24

Supported by

Fundamental Research Funds for the Central Universities (K5051302018)

摘要

针对时频同时混叠条件下的欠定盲源分离(UBSS)问题,提出了一种基于四阶累积量(FO)与张量正则分解相结合的算法。首先构建观测到的混合信号的四阶累积量,并利用高阶累积量的"半不变性"将其表示成四阶张量的形式,然后采用线性搜索迭代最小二乘算法对张量进行分解并获得混合矩阵的估计,最后根据估计出的混合矩阵,采用最小均方误差波束形成器算法,完成源信号的恢复。仿真结果表明该方法的有效性,与已有算法相比提高了信号盲分离的性能。

本文引用格式

艾小凡 , 罗勇江 , 赵国庆 . 基于张量正则分解的时频混叠信号欠定盲分离方法[J]. 航空学报, 2015 , 36(10) : 3393 -3400 . DOI: 10.7527/S1000-6893.2014.0319

Abstract

This paper proposes a method of underdetermined blind separation of non-disjoint sources (UBSS) based on fourth-order cumulant (FO) and tensor decomposition. By semi-invariance of high-order cumulant, the FO is presented as statistics of the observed signal as fourth-order tensor; hence the mixed matrix is estimated by tensor decomposition with line search alternating least square. Finally, with the estimated matrix, sources are recovered by minimum mean-squared error-based beamforming. Simulations illustrate the validity of the method and show that the proposed method outperforms the existing methods in performance significantly.

参考文献

[1] Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations[J]. Signal processing, 2001, 81(11): 2353-2362.
[2] Fu N, Qiao L Y, Peng X Y. Blind recovery of mixing matrix with sparse sources based on improved K-means Clustering and hough transform[J]. Acta Electronica Sinica, 2009, 37(A04): 92-96 (in Chinese). 付宁, 乔立岩, 彭喜元. 基于改进 K-means 聚类和霍夫变换的稀疏源混合矩阵盲估计算法[J]. 电子学报, 2009, 37(A04): 92-96.
[3] Fu W H, Wang L, Ma L F. Improved laplace mixed model potential function algorithm for UBSS[J]. Journal of Xidian University, 2014, 41(6): 1-6 (in Chinese). 付卫红, 王璐, 马丽芬. 一种改进的势函数欠定盲源分离算法[J]. 西安电子科技大学学报, 2014, 41(6): 1-6.
[4] Chen X J, Cheng H, Tang B. Underdetermined blind radar signal separation based on ICA[J]. Journal of Electronics and Information Technology, 2010, 32(4): 919-924 (in Chinese). 陈晓军, 成昊, 唐斌. 基于ICA的雷达信号欠定盲分离算法[J]. 电子与信息学报, 2010, 32(4): 919-924.
[5] Zhang L, Yang J, Lu K, et al. Modified subspace method based on convex model for underdetermined blind speech separation[J]. IEEE Transactions on Consumer Electronics, 2014, 60(2): 225-232.
[6] Wang X, Huang Z, Zhou Y. Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method[J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 17-25.
[7] Abrard F, Deville Y. A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources[J]. Signal Processing, 2005, 85(7): 1389-1403.
[8] Kim S G, Yoo C D. Underdetermined blind source separation based on subspace representation[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2604-2614.
[9] Bao G, Ye Z, Xu X, et al. A compressed sensing approach to blind separation of speech mixture based on a two-layer sparsity model[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(5): 899-906.
[10] Lu F B, Huang Z T, Peng G, et al. Underdetermined blind source separation (UBSS): A time-frequency approach[J]. Acta Electronica Sinica, 2011, 39(9): 2067-2072 (in Chinese). 陆凤波, 黄知涛, 彭耿, 等. 基于时频分布的欠定混叠盲分离[J]. 电子学报, 2011, 39(9): 2067-2072.
[11] Ferréol A, Albera L, Chevalier P. Fourth-order blind identification of underdetermined mixtures of sources (FOBIUM)[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1640-1653.
[12] de Lathauwer L, Castaing J, Cardoso J. Fourth-order cumulant-based blind identification of underdetermined mixtures[J]. IEEE Transactions on Signal Processing, 2007, 55(6): 2965-2973.
[13] Ge S N, Han M. Fourth-order cumulant of tensor decomposition method for blind identification of underdetermined separation[J]. Acta Electronica Sinica, 2014, 42(5): 992-997 (in Chinese). 葛素楠, 韩敏. 基于四阶累积张量方法的欠定盲源信号分离[J]. 电子学报, 2014, 42(5): 992-997.
[14] Georgiev P, Theis F, Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures[J] . IEEE Transactions on Neural Networks, 2005, 16(4) : 992-996.
[15] Kolda T G, Bader B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455-500.
[16] de Lathauwer L. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization[J]. SIAM Journal on Matrix Analysis and Applications, 2006, 28(3): 642-666.
[17] Rajih M, Comon P, Harshman R A. Enhanced line search: A novel method to accelerate PARAFAC[J]. SIAM Journal on Matrix Analysis and Applications, 2008, 30(3): 1128-1147.
[18] Nion D, de Lathauwer L. An enhanced line search scheme for complex-valued tensor decompositions: Application in DS-CDMA[J]. Signal Processing, 2008, 88(3): 749-755.
[19] Koldovsky Z, Tichavsky P, Phan A H, et al. A two-stage MMSE beamformer for underdetermined signal separation[J]. IEEE Signal Processing Letters, 2013, 20(12): 1227-1230.

文章导航

/