电子与控制

欠驱动直连式三体绳系卫星非线性姿态跟踪控制

  • 黄静 ,
  • 李传江 ,
  • 马广富
展开
  • 哈尔滨工业大学 航天学院, 哈尔滨 150001
黄静 女, 博士研究生。主要研究方向: 绳系卫星姿态与轨道控制, 非线性控制, 鲁棒最优控制。 Tel: 0451-86413411-8606 E-mail: huangjing04415@163.com;李传江 男, 博士, 教授, 博士生导师。主要研究方向: 卫星姿态与轨道控制, 最优控制。 Tel: 0451-86413411-8606 E-mail: chuanjiangli@gmail.com;马广富 男, 博士, 教授, 博士生导师。主要研究方向: 航天器控制, 最优控制, 鲁棒控制。 Tel: 0451-86402726 E-mail: magf@hit.edu.cn

收稿日期: 2014-05-28

  修回日期: 2014-08-15

  网络出版日期: 2014-11-24

基金资助

国家自然科学基金 (61304005, 61174200)

Nonlinear attitude tracking control of underactuated three-inline tethered satellite

  • HUANG Jing ,
  • LI Chuanjiang ,
  • MA Guangfu
Expand
  • School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2014-05-28

  Revised date: 2014-08-15

  Online published: 2014-11-24

Supported by

National Natural Science Foundation of China (61304005, 61174200)

摘要

针对存在外部有界干扰和控制饱和的欠驱动直连式三体旋转绳系卫星系统姿态跟踪控制问题,提出了一种分布式非线性控制方法。首先考虑单体欠驱动绳系卫星姿态模型,由于其复杂的非完整动力学特性,应用微分同胚映射的方法先将模型进行转换,进一步基于反步法设计了欠驱动姿态跟踪滑模控制器,并结合抗饱和方法解决了控制受限的问题。然后应用Lyapunov稳定性定理证明了其闭环系统的一致最终有界性。进一步考虑绳系卫星系统的运动同步性,将欠驱动单体绳系卫星姿态控制器设计扩展至直连式三体绳系卫星姿态系统,设计了分布式欠驱动非线性控制器。最后进行了数学仿真,验证了本文所设计控制方法的有效性。

本文引用格式

黄静 , 李传江 , 马广富 . 欠驱动直连式三体绳系卫星非线性姿态跟踪控制[J]. 航空学报, 2015 , 36(6) : 1995 -2004 . DOI: 10.7527/S1000-6893.2014.0296

Abstract

A decentralized nonlinear control strategy is proposed for attitude tracking of underactuated three-inline spinning tethered satellite system in the presence of bounded disturbances and control saturation. For an underactuated single-tethered satellite, a change of coordinates by nonlinear diffeomorphism is used for the complex dynamics of non-complete. Then, a robust sliding mode control scheme is proposed such that the underactuated tethered satellite attitude system is able to track the command signals in the presence of control saturation based on backstepping philosophy combined with anti-windup technique. Within the Lyapunov framework, the uniformly ultimate boundedness of the system states is guaranteed. Further, considering the movement synchronization of tethered satellite system, the attitude controller design for underactuated single-tethered satellite is extended to the three-inline system and a decentralized attitude tracking controller is developed. Numerical simulation results demonstrate the effective of the control strategy.

参考文献

[1] Quinn D A, Folta D C. A tethered formation flying concept for the SPECS mission[C]//Proceedings of the 23rd Rocky Mountain Guidance and Control Conference, 2000, 104: 183-196.
[2] Jin D P, Wen H, Hu H Y. Modeling, dynamics and control of cable systems[J]. Advances in Mechanics, 2004, 34(3): 304-313 (in Chinese). 金栋平, 文浩, 胡海岩. 绳索系统的建模、动力学和控制[J]. 力学进展, 2004, 34(3): 304-313.
[3] Misch A K, Hall C D. Dynamics and control of rotating tethered satellite systems[J]. Journal of Spacecraft and Rockets, 2007, 44(3): 649-659.
[4] Kumar K D. Review of dynamics and control of nonelectrodynamic tethered satellite systems[J]. Journal of Spacecraft and Rockets, 2006, 43(4): 705-720.
[5] Levin E M. Dynamics analysis of space tether missions[M]. Reston: AIAA, 2007: 11-18.
[6] Menon C, Bombardelli C. Self-stabilizing attitude control for spinning tethered formations[J]. Acta Astronautica, 2007, 60: 828-833.
[7] Liu L L, Wen H, Jin D P. Optimal control of orbit transfer for a tethered subsatellite system[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 332-336 (in Chinese). 刘丽丽, 文浩, 金栋平. 绳系卫星轨道转移的最优控制[J]. 航空学报, 2009, 30(2): 332-336.
[8] Modi V J, Gilardi G, Misra A K. Attitude control of space platform based tethered satellite system[J]. Journal of Aerospace Engineering, 1998, 11(2): 24-31.
[9] Williams P, Watanabe T, Blanksby C. Libration control of flexible tethers using electromagnetic forces and movable attachment[J]. Journal of Guidance, Control and Dynamics, 2004, 27(5): 882-897.
[10] Chung S J, Slotine J J E, Miller D W. Nonlinear model reduction and decentralized control of tethered formation flight[J]. Journal of Guidance, Control and Dynamics, 2007, 30(2): 390-400.
[11] Huang J, Liu G, Ma G F. Nonlinear optimal attitude tracking of uncertain three-inline tethered satellite systems[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 679-687 (in Chinese). 黄静, 刘刚, 马广富. 直连式三体绳系卫星姿态鲁棒最优跟踪控制[J]. 航空学报, 2012, 33(4): 679-687.
[12] Spong M W. The swing up control problem for the acrobot[J]. IEEE Control Systems Magazine, 1995, 15(1): 49-55.
[13] Olfati-Saber R. Normal forms for underactuated mechanical systems with symmetry[J]. IEEE Transactions on Automatic Control, 2002, 47(2): 305-308.
[14] Adhikary N, Mahanta C. Integral backstepping sliding mode control for underactuated systems: Swing-up and stabilization of the Cart-Pendulum System[J]. ISA Transactions, 2013, 52(6): 870-880.
[15] Tsiotras P, Luo J H. Control of underactuated spacecraft with bounded inputs[J]. Automatica, 2000, 36(8): 1153-1169.
[16] Tsiotras P, Doumtchenko V. Control of spacecraft subject to actuator failures: state-of-the-art and open problems[J]. Journal of the Astronautical Sciences, 2000, 48(2): 337-358.
[17] Wang Y, Ge X S. Attitude control of an underactuated spacecraft base on center manifold theory[J]. Journal of Beijing Information Science and Technology University: Natural Science Edition, 2010, 25(2): 37-40 (in Chinese). 王艺, 戈新生. 基于中心流形理论的欠驱动航天器姿态控制[J]. 北京信息科技大学学报: 自然科学版, 2010, 25(2): 37-40.
[18] Huang J, Li C J, Ma G F, et al. Generalised inversion based maneuver attitude control for underactuated spacecraft[J]. Acta Automatica Sinica, 2013, 39(3): 285-292 (in Chinese). 黄静, 李传江, 马广富, 等. 基于广义逆的欠驱动航天器姿态机动控制[J]. 自动化学报, 2013, 39(3): 285-292.
[19] Chung S J, Slotine J J E, Miller D W. Propellant-free control of tethered formation flight, part 2: Nonlinear underactuated control[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1437-1446.
[20] Polycarpou M M, Ioannou P A. A robust adaptive nonlinear control design[J]. Automatica, 1996, 32(3): 423-427.
[21] Sonneveldt L, Chu Q P, Mulder J A. Nonlinear flight control design using constrained adaptive backstepping[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 332-336.
[22] Swaroop D, Hedrick J K, Yip P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1893-1899.
[23] Wang W, Slotine J J E. On partial contraction analysis for coupled nonlinear oscillators[J]. Biological Cybernetics, 2005, 92(1): 38-53.

文章导航

/