等离子体合成射流的理论模型与重频激励特性
收稿日期: 2014-07-16
修回日期: 2014-10-08
网络出版日期: 2014-11-15
基金资助
国家自然科学基金(51336011, 51207169, 51407197)
Analytical model and repetitive working characteristics of plasma synthetic jet
Received date: 2014-07-16
Revised date: 2014-10-08
Online published: 2014-11-15
Supported by
National Natural Science Foundation of China (51336011, 51207169, 51407197)
等离子体合成射流(PSJ)具有激励强度大、响应速度快等优点,在超声速流动控制领域应用前景广阔。鉴于此,基于传热学和气体动力学的相关理论,建立了考虑喉道内部气流惯性、腔体内外热交换以及吸气恢复阶段的PSJ全周期理论模型,实现了射流速度峰值时刻、吸气过程和振荡过程等关键特性的预测。基于该模型,分析了等离子体合成射流激励器的重复频率工作特点,研究了能量沉积、激励频率和射流孔径对于重频激励特性的影响。重频条件下,激励器存在过渡和稳定两种典型状态。过渡状态下,腔内平均温度不断升高、射流速度峰值逐渐增大。稳定状态下,腔内气体参数呈周期性变化。随着能量沉积和激励频率的增加,激励器腔体内壁温度、射流速度峰值和时均冲力均增加。受腔体材料耐温极限的制约,激励器存在安全工作的参数区间(SOA)。随着孔径的增加,SOA增大,但稳定工作状态下的射流速度峰值和射流持续时间减小。
宗豪华 , 吴云 , 宋慧敏 , 李应红 , 张志波 . 等离子体合成射流的理论模型与重频激励特性[J]. 航空学报, 2015 , 36(6) : 1762 -1774 . DOI: 10.7527/S1000-6893.2014.0297
Plasma synthetic jet (PSJ) actuator has a broad application prospect in supersonic flow control due to its high actuation intensity and rapid response. Based on theories of heat transfer and gas dynamics, an analytical model of the whole working process of PSJ is established. This model takes the inertia of throat gas, heat transfer through the cavity and the refresh stage of actuator into consideration, and can predict the peak jet velocity occurrence time, refresh stage and the oscillation stage. Based on this model, the repetitive working process and characteristics of actuator with different energy deposition, actuation frequencies and orifice diameters, are researched. In the repetitive working process of actuator, there exist two typical working stages, transition stage and steady stage. Both the cavity temperature and peak jet velocity rise at the transition stage while vary periodically at the steady stage. With the energy deposition and actuation frequency increasing, the cavity wall temperature, as well as the peak jet velocity and time-averaged thrust, goes up. Limited by the safety working temperature of cavity material, a safe operation area (SOA) of actuator exists. The area of SOA is proportional to the jet orifice diameter. As the orifice diameter augments, both the peak jet velocity and jet duration time at the steady stage decrease.
Key words: plasma; synthetic jet; actuator; analytical model; flow control
[1] Li Y H, Wu Y, Li J. Review of the investigation on plasma flow control in China[J]. International Journal of Flow Control, 2012, 4(1+2): 1-17.
[2] Zhao X H, Wu Y, Li Y H, et al. Separation structure and plasma flow control on highly loaded compressor cas-cade[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 208-219 (in Chinese). 赵小虎, 吴云, 李应红, 等. 高负荷压气机叶栅分离结构及其等离子体流动控制研究[J]. 航空学报, 2012, 33(2): 208-219.
[3] Wang J, Li Y H, Cheng B Q, et al. Experimental investigation on shock wave control by plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8): 1374-1379 (in Chinese). 王键, 李应红, 程邦勤, 等. 等离子体气动激励控制激波的实验研究[J]. 航空学报, 2009, 30(8): 1374-1379.
[4] Wang L, Luo Z B, Xia Z X, et al. Review of actuators for high speed active flow control[J]. Science China Technological Science, 2012, 55(8): 2225-2240.
[5] Grossman K R, Cybyk B Z, VanWie D M. Spark jet actuators for flow control, AIAA-2003-0057[R]. Reston: AIAA, 2003.
[6] Haack S J, Land H B, Cybyk B Z. Characterization of a high-speed flow control actuator using digital speckle tomography and PIV, AIAA-2008-3759[R]. Reston: AIAA, 2008.
[7] Haack S J, Taylor T M, Emhoff J, et al. Development of an analytical Sparkjet model, AIAA-2010-4979 [R]. Reston: AIAA, 2010.
[8] Popkin S H, Taylor T M, Cybyk B Z. Development and application of the SparkJet actuator for high-speed flow control[J]. Johns Hopkins APL Technical Digest, 2013, 32(1): 404-419.
[9] Narayanaswamy V, Rajia L, Clemens N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2): 297-305.
[10] Golbabaei-As M, Knighty D, Anderson K. SparkJet eciency, AIAA-2013-0928[R]. Reston: AIAA, 2013.
[11] Anderson K, Knight D. Plasma jet for flight control[J]. AIAA Journal, 2012, 50(9): 1855-1873.
[12] Belinger A, Hardy P, Barricau P, et al. Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator [J]. Journal of Physics D: Applied Physics, 2011, 44(36): 365201.
[13] Shin J. Characteristics of high speed electro-thermal jet activated by pulsed DC discharge [J]. Chinese Journal of Aeronautics, 2010, 23(5): 518-522.
[14] Jia M, Liang H, Song H M, et al. Characteristic of the spark discharge plasma jet driven by nanosecond pulses [J]. High Voltage Engineering, 2011, 37(6): 1493-1498 (in Chinese). 贾敏, 梁华, 宋慧敏, 等. 纳秒脉冲等离子体合成射流气动激励特性研究[J]. 高电压技术, 2011, 37(6): 1493-1498.
[15] Wang L, Luo Z B, Xia Z X, et al. Energy efficiency and performance characteristics of plasma synthetic jet actuator[J]. Acta Physica Sinica, 2013, 62(12): 125207 (in Chinese). 王林, 罗振兵, 夏智勋, 等. 等离子体合成射流能量效率及工作特性研究[J]. 物理学报, 2013, 62(12): 125207.
[16] Wang L, Xia Z X, Luo Z B, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control[J]. AIAA Journal, 2014, 52(4): 879-882.
[17] Shan Y, Zhang J Z, Tan X M. Numerical study of flow characteristics and excitation parameters for the sparkjet actuator[J]. Journal of Aerospace Power, 2011, 26(3): 551-557 (in Chinese). 单勇, 张靖周, 谭晓茗. 火花型合成射流激励器流动特性及其激励参数数值研究[J]. 航空动力学报, 2011, 26(3): 551-557.
[18] Zhang J Z, Chang H P. Heat transfer[M]. Beijing: Science Press, 2009: 156-164 (in Chinese). 张靖周, 常海萍. 传热学[M]. 北京: 科学出版社, 2009: 156-164.
[19] Porter C O, Baughn J W, McLaughlin T E, et al. Temporal force measurements on an aerodynamic plasma actuator, AIAA-2006-0104[R]. Reston: AIAA, 2006.
/
〈 |
|
〉 |