电子与控制

基于数值计算的机载SAR空变运动补偿算法

  • 宋伟 ,
  • 朱岱寅 ,
  • 叶少华
展开
  • 1. 南京航空航天大学 电子信息工程学院, 南京 210016;
    2. 中航工业雷华电子技术研究所, 无锡 214063
宋伟 男,博士研究生,高级工程师。主要研究方向:机载合成孔径雷达信号处理技术。Tel:0510-85707927 E-mail:sw_818@163.com;朱岱寅 男,博士,教授,博士生导师。主要研究方向:合成孔径雷达信号处理技术。E-mail:zhudy@nuaa.edu.cn;叶少华 男,博士,研究员。主要研究方向:机载合成孔径雷达系统技术。

收稿日期: 2014-03-20

  修回日期: 2014-11-03

  网络出版日期: 2014-11-15

基金资助

航空科学基金(20132007001);国防基础科研项目(B2520110008);南京航空航天大学基本科研业务费(NS2013023)

Airborne SAR space-variant motion compensation algorithm based on numerical calculation

  • SONG Wei ,
  • ZHU Daiyin ,
  • YE Shaohua
Expand
  • 1. College of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. AVIC Leihua Electronic Technology Research Institute, Wuxi 214063, China

Received date: 2014-03-20

  Revised date: 2014-11-03

  Online published: 2014-11-15

Supported by

Aeronautical Science Foundation of China (20132007001);Defense Industrial Technology Development Program (B2520110008); NUAA Fundamental Research Funds (NS2013023)

摘要

针对机载合成孔径雷达(SAR)高分辨率宽测绘带(HRWS)成像问题,在分析结合两步运动误差补偿的距离徙动算法基础上,提出一种基于数值计算的空变运动误差补偿算法。通过对粗聚焦图像进行分块,在子块的两维波数域进行空变运动补偿,补偿的相位包括方位相位误差、距离相位误差以及方位和距离的耦合相位,因此该算法在复杂航迹、高分辨和宽测绘带情况下仍具有较好的鲁棒性。最后对SAR仿真数据和实测数据进行处理,并与结合两步运动误差补偿的距离徙动算法进行比较,处理结果表明该算法能够更好地补偿空变运动误差。

本文引用格式

宋伟 , 朱岱寅 , 叶少华 . 基于数值计算的机载SAR空变运动补偿算法[J]. 航空学报, 2015 , 36(2) : 625 -632 . DOI: 10.7527/S1000-6893.2014.0311

Abstract

Aimed at the imaging problems of high resolution wide swath (HRWS) airborne synthetic aperture radar (SAR), on the basis of conventional range migration algorithm with integrated two-step motion compensation, a new space-variant motion compensation algorithm based on numerical calculation is proposed for HRWS airborne SAR. This algorithm compensates the spatial-variant motion error in the two-dimensional wavenumber domain by transforming the coarsely focused image to block. The compensated phase includes azimuth phase error, range phase error and the coupling phase of range and azimuth. So the proposed algorithm can work well for the HRWS SAR data with complex flight path. Finally, The new proposed algorithm is compared with range migration algorithm with integrated two-step motion compensation by processing simulation data and real data. Real data processing results demonstrate that the algorithm can better compensate the spatial-variant motion error.

参考文献

[1] Tang Y, Xing M D, Bao Z, The polar format imaging algorithm based on double chirp-Z transforms[J]. IEEE Geoscience and Remote Sensing Letters, 2008,5(4): 610-614.

[2] Zhu D Y, Ye S H, Zhu Z D. Polar format algorithm using chirp scaling for spotlight SAR image formation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4): 1433-1448.

[3] Raney R K, Runge H, Cumming I G, et al. Precision of SAR processing using chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 786-799.

[4] Davidson G W, Cumming I D, Ito M R. A chirp scaling approach for processing squint model SAR data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 121-133.

[5] Fornaro G. Trajectory deviations in airborne SAR: analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997-1009.

[6] Fornaro G, Franceschetti G, Perna S. Motion compensation errors: effects on the accuracy of airborne SAR images[J]. IEEE Transactions on Aerospace and Electronic System, 2005, 41(4): 1338-1352.

[7] Moreira A, Huang Y H. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1029-1040.

[8] Reigber A, Alivizatos E, Potsis A, et al. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation[J]. IEE Proceedings-Radar Sonar Navigations, 2006, 153(3): 301-310.

[9] Mao X H, Zhu D Y, Zhu Z D, Space-variant motion compensation for airborne spotlight SAR under complicated flight path and rugged terrain[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 744-754 (in Chinese). 毛新华, 朱岱寅, 朱兆达. 复杂航迹和起伏地形条件下机载聚束SAR空变运动补偿[J].航空学报, 2012, 33(4): 744-754.

[10] Xing M D, Jiang X W, Wu R B, et al. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2870-2883.

[11] Minh P N, Ben A. Second order motion compensation for squinted spotlight synthetic aperture radar[C]//2013 Asia-pacific Conference on Synthetic Aperture Radar (APSAR). Piscataway, NJ: IEEE, 2013: 202-205.

[12] Berizzi F, Martorella M, Cacciamano A. Synthetic range profile focusing via contrast optimization[C]//IEEE International Geoscience and Remote Sensing Syposiam. Piscataway, NJ: IEEE, 2007: 3563-3566.

[13] Zhong X L, Xiang M S, Yue Y. Algorithm on the estimation of residual motion errors in airborne SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1311-1323.

[14] Potsis A, Reigber A, Mittermayer J, et al. Sub-aperture algorithm for motion compensation improvement in wide-beam SAR data processing[J]. IEEE Electronic Letters, 2001, 37(23): 1405-1406.

[15] Xue G Y, Zhou Z M, Lai T. An improved sub-aperture sub-patch motion compensation algorithm for UWB SAR[J]. Journal of Astronautics, 2008, 29(3): 1008-1014 (in Chinese). 薛国义, 周智敏, 赖涛. 宽波束角大测绘带UWB SAR 的子孔径子带运动补偿算法[J]. 宇航学报, 2008, 29(3):1008-1014.

文章导航

/