不同襟翼偏角梯形翼构型气动特性数值模拟
收稿日期: 2014-07-31
修回日期: 2014-10-27
网络出版日期: 2014-11-06
基金资助
国家"973"计划 (2014CB744803)
Numerical simulation of aerodynamic characteristics of trapezoidal wing configuration at different flap angles
Received date: 2014-07-31
Revised date: 2014-10-27
Online published: 2014-11-06
Supported by
National Basic Research Program of China (2014CB744804)
基于雷诺平均Navier-Stokes(RANS)方程和结构网格技术,采用二阶离散精度的单调迎风格式(MUSCL),结合剪切应力输运(SST)两方程湍流模型和γ-Reθ转捩模型,研究了梯形翼高升力构型襟翼偏角变化对气动特性的影响。主要目的是进一步确认Trisonic Platform (TRIP)软件模拟高升力梯形翼不同襟翼偏角引起微小气动特性变化的能力。首先,简要介绍了采用的计算方法;其次,介绍了两种襟翼偏角的梯形翼模型及风洞试验;最后,在网格收敛性研究的基础上,采用全湍流和转捩两种方式模拟了梯形翼构型不同襟翼偏角对气动特性的影响。与试验数据的对比结果表明,采用全湍流和转捩两种方式均可以较好地模拟不同襟翼偏角对气动特性的影响量,采用γ-Reθ转捩模拟方式可以提高梯形翼构型气动特性的模拟精度,失速迎角附近的气动特性模拟需要进一步研究。
王运涛 , 李松 , 孟德虹 , 洪俊武 , 杨小川 . 不同襟翼偏角梯形翼构型气动特性数值模拟[J]. 航空学报, 2015 , 36(6) : 1823 -1829 . DOI: 10.7527/S1000-6893.2014.0309
Based on the Reynolds-averaged Navier-Stokes (RANS) equations and structured grid technology, with second-order monotonic upstream-centered scheme for conservation laws (MUSCL), combined with shear stress transport (SST) turbulence model and γ-Reθ transition model, the influence of different flap angles on the aerodynamic characteristics of high lift trapezoidal wing is studied. The purpose of the present work is to further validate the ability of CFD solver—Trisonic Platform (TRIP) in simulating the small increments of aerodynamic characteristics resulting from different flap angles of the trapezoidal wing configuration. Firstly, the numerical methods are introduced briefly. Then, the trapezoidal wing configuration with two different flap angels and the experimental activities are described. At last, on the basis of grid convergence study, the influence of different flap angles on the aerodynamic characteristics of the trapezoidal wing configuration is studied with fully turbulent and transition models. Compared with the experimental data, the numerical results illustrate that the small increments of aerodynamic characteristics due to different flap angles can be predicted reasonably with either fully turbulent model or transition model, numerical accuracy of aerodynamic characteristics of the trapezoidal wing configuration is improved obviously with γ-Reθ transition model included and further study on the simulation of aerodynamic characteristics near the stall angle is needed.
[1] Anton P S, Johnson D J, Block M, et al. Wind tunnel and propulsion test facilities: supporting analyses to an assessment of NASA's capabilities to serve national needs, NASA TR-134[R]. Washington, D.C.: NASA, 2004.
[2] Johnson F T, Tinoco E N, Jong Y N. Thirty years of development and application of CFD at Boeing commercial airplane[J]. Computers & Fluids, 2005, 34(10): 1115-1151.
[3] Rumsey C L, Ying S X. Prediction of high lift: review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38(2): 145-180.
[4] Tinoco E N, Bogue D R, Kao T J, et al. Progress toward CFD for full flight envelope[J]. Aeronautical Journal, 2005, 109(1100): 451-460.
[5] Slotnick J, Khodadoust A, Alonso J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences, NASA/CR-2014-218178[R]. Washington, D.C.: NASA, 2014.
[6] Rudnik R. CFD assessment for high lift flows in the European project EUROLIFT, AIAA-2003-3794[R]. Reston: AIAA, 2003.
[7] Rudnik R, Frhr. V. Geyr H. The European high lift project EUROLIFT Ⅱ—objectives, approach, and structure, AIAA-2007-4296[R]. Reston: AIAA, 2007.
[8] Slotnick J P, Hannon J A, Chaffin M. Overview of the first AIAA CFD high lift prediction workshop, AIAA-2011-0862[R]. Reston: AIAA, 2011.
[9] Rumsey C L, Long M, Stuever R A. Summary of the first AIAA CFD high lift prediction workshop, AIAA-2011-0939[R]. Reston: AIAA, 2011.
[10] Wang Y T, Li S, Meng D H, et al. Numerical simulation technology of high lift trapezoidal wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3213-3221 (in Chinese). 王运涛, 李松, 孟德虹, 等. 梯形翼高升力构型的数值模拟技术[J]. 航空学报, 2014, 35(12): 3213-3221.
[11] Meng D H, Zhang Y L, Wang G X, et al. Application of γ-Reθ transition model to two-dimensional low speed flows[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 792-801 (in Chinese). 孟德虹, 张玉伦, 王光学, 等. γ-Reθ 转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5): 792-801.
[12] van Leer B. Towards the ultimate conservation differencesscheme II, monoticity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14(4): 361-370.
[13] Menter F R. Two equation eddy viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[14] Menter F R, Langtry R B, Likki S R, et al. A correlation based transition model using local variables: part 2—test cases and industrial application[J]. Journal of Turbomachinery, 2004, 128(3): 423-434.
[15] Menter F R, Langtry R B. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906.
[16] Grab C, Krumbein A. Correlation-based transition transport modeling for three-dimensional aerodynamic configuration[J]. Journal of Aircraft, 2013, 50(5): 1533-1539.
[17] Johnson P L, Jones K M, Madson M D. Experimental investigation of a simplified 3D high lift configuration of civil transport aircraft, AIAA-2008-0410[R]. Reston: AIAA, 2008.
[18] McGinley C B, Jenkins L N, Watson R D, et al. 3-D high-lift flow physics experiment-transition measurement, AIAA-2005-5148[R]. Reston: AIAA, 2005.
[19] Sclafani A J, Slotnick J P, Vassberg J C, et al. OVERFLOW analysis of the NASA trap wing wind tunnel model from the first high lift prediction workshop, AIAA-2011-0866[R]. Reston: AIAA, 2011.
[20] Sclafani A J, Slotnick J P, Vassberg J C, et al. Extended OVERFLOW analysis of the NASA trap wing wind tunnel model, AIAA-2012-2919[R]. Reston: AIAA, 2012.
/
〈 | 〉 |