SA和SST湍流模型对高超声速边界层强制转捩的适应性
收稿日期: 2014-05-06
修回日期: 2014-10-20
网络出版日期: 2014-11-06
基金资助
国家自然科学基金 (11072259);高超声速冲压发动机技术重点实验室开放课题
SA and SST turbulence models for hypersonic forced boundary layer transition
Received date: 2014-05-06
Revised date: 2014-10-20
Online published: 2014-11-06
Supported by
National Natural Science Foundation of China (11072259); The Open Foundation of Science and Technology on Scramjet Key Laboratory
凸起物是高超声速流动中常用的一种人工转捩装置。采用高阶精度算法模拟了高超声速进气道压缩面上的强制转捩流动,转捩装置为一排高度为1 mm的钻石型凸起物和斜坡型凸起物。考察了Spalart-Allmaras (SA)模型和剪切应力输运(SST)湍流模型对该问题的适应性。在考察过程中通过丰富的算例分析了网格规模、可压缩修正和空间离散格式等对计算结果的影响。在层流区,计算能与试验取得非常一致的结果。但在湍流区,计算得到的热流通常高出试验数据。经分析发现其原因是强制转捩的湍流边界层与自然转捩的湍流边界层在涡结构上存在较大差别,使得湍流模型的效果较差。针对高超强制转捩湍流涡结构丰富的特点,对SST湍流模型进行了修改。计算结果表明,该修改方法对提高热流精度具有一定效果。
涂国华 , 燕振国 , 赵晓慧 , 马燕凯 , 毛枚良 . SA和SST湍流模型对高超声速边界层强制转捩的适应性[J]. 航空学报, 2015 , 36(5) : 1471 -1479 . DOI: 10.7527/S1000-6893.2014.0292
Protuberances are widely used for the trip laminar-turbulent transition of boundary layers. A row of 1 mm height diamond and slop protuberances are installed on the compression surface of a hypersonic inlet model. High-order schemes are applied to simulating the forced-transition flows. The Spalart-Allmaras (SA) and shear stress transport (SST) turbulence models are investigated for this kind of flow. Quite a number of numerical tests are taken to examine to what extent grid sizes, compressibility corrections and spatial discrete schemes influence the numerical accuracy. It turns out that the computed results are well consistent with experimental results in the laminar region, while the computed heating transfer rates are much larger than experimental data in the turbulent region. The inconsistency is suspected to be caused by the vortex structure of forced transitional flows which are quite different from natural transitional flows. The abundant vortices in forced transitional boundary layers may degrade the effectiveness of turbulence models. According to the characteristics of vortex structures, a modification to the SST model is suggested for hypersonic turbulent boundary layers caused by forced transition. Numerical tests indicate that the modification can enhance the accuracy of computed heating transfer rates.
[1] Zhao H Y, Zhou Y, Ni H L, et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 1-6 (in Chinese). 赵慧勇, 周瑜, 倪鸿礼, 等. 高超声速进气道边界层强制转捩试验[J]. 实验流体力学, 2012, 26(1): 1-6.
[2] Berry S A, Daryabeigi K, Wurster K, et al. Boundary-layer transition on X-43A[J]. Journal of Spacecraft and Rockets, 2010, 47(6): 922-934.
[3] Berry S A, Auslender A H, Dilley A H, et al. Hypersonic boundary layer trip development for Hyper-X[J]. Journal of Spacecraft and Rockets, 2001, 38(6): 853-864.
[4] Yan Z G. Investigation of implicit time integration methods with HDCS schemes[D]. Mianyang: China Aerodynamics Research and Development Center, 2013 (in Chinese). 燕振国. 高精度混合线性紧致格式的隐式时间推进方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2013.
[5] Tu G H, Deng X G, Mao M L. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme[J]. Science in China: Physics, Mechanics & Astronomy, 2013, 56(4): 805-811.
[6] Tu G H, Deng X G, Mao M L. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J]. Chinese Journal of Aeronautics, 2012, 25(1): 25-32.
[7] Deng X G, Zhang H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 24-44.
[8] Tu G H, Deng X G, Mao M L. A staggered non-oscillatory finite difference method for high-order discretization of viscous terms[J]. Acta Aerodynamica Sinica, 2011, 29(1): 10-15 (in Chinese). 涂国华, 邓小刚, 毛枚良. 消除黏性项高阶离散数值振荡的半结点-结点交错方法[J]. 空气动力学学报, 2011, 29(1): 10-15.
[9] Deng X G, Mao M L, Tu G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115.
[10] Yan Z G, Liu H Y, Mao M L, et al. Development of 3rd order HWCNS scheme and its application in hypersonic flow simulations[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1460-1470 (in Chinese). 燕振国, 刘化勇, 毛枚良, 等.三阶HWCNS 格式的构造及在高超流动中的应用[J]. 航空学报, 2015, 36(5): 1460-1470
[11] Deng X G, Mao M L, Tu G H, et al. Extending weighted compact nonlinear schemes to complex grids with characteristic-based interface conditions[J]. AIAA Journal, 2010, 48(12): 2840-2851.
[12] Tu G H, Mao M L, Deng X G. Implementing high-order weighted compact nonlinear scheme on patched grids with a nonlinear interpolation[J]. Computers & Fluids, 2013, 77: 181-193.
[13] Deng X G, Mao M L, Tu G H, et al. High-order and high accurate CFD methods and their applications for complex grid problems[J]. Communication in Computational Physics, 2012, 11(4): 1081-1102.
[14] Deng X B. Freestream noise impact on forced transition of hypersonic boundary layer[C]//CCTAM-2013. Beijing: Chinese Mechanics Society, 2013: 1-8 (in Chinese). 邓小兵. 来流噪声对高超声速进气道强制转捩的影响[C]//中国力学大会-2013. 北京: 中国力学学会, 2013:1-8.
[15] Yan Z G, Liu H Y, Mao M L, et al. Convergence property investigation of GMRES method based on high-order dissipative compact scheme[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1181-1192 (in Chinese). 燕振国, 刘化勇, 毛枚良, 等.基于高阶耗散紧致格式的GMRES方法收敛特性研究[J]. 航空学报, 2014, 35(5): 1181-1192.
[16] Wilcox D C. Turbulence modeling for CFD[M]. 3rd ed. La Canada: DWC Industries, 2006.
[17] Wilcox D C. Formulation of the k-omega turbulence model revisited[J]. AIAA Journal, 2008, 46(11): 2823-2838.
[18] Dacles-Mariani J, Kwak D, Zlliac G G. On numerical errors and turbulence modeling in tip vortex flow prediction[J]. International Journal for Numerical Methods in Fluids, 1999, 30(1): 65-82.
[19] Denissen N A, Yoder D A, Georgiadis N J. Implementation and validation of a laminar-to-turbulent transition model in the Wind-US code, NASA/TM-2008-215451[R]. Washington, D.C.: NASA, 2008.
[20] Dhawan S, Narasimha R. Some properties of boundary-layer flow during transition from laminar to turbulent motion[J]. Journal of Fluid Mechanics, 1958, 3(4): 414-436.
[21] Fu S, Wang L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Sciences, 2013, 58: 36-59.
[22] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906.
/
〈 | 〉 |