流体力学与飞行力学

U型方管中爆燃向爆震转变特性实验研究

  • 邱华 ,
  • 王玮 ,
  • 范玮 ,
  • 熊姹
展开
  • 西北工业大学 动力与能源学院, 西安 710072
邱华 男, 博士, 副教授。主要研究方向: 爆震推进应用基础研究, 发动机燃烧与流动, 非定常推进中的能量高效提取与转化。 Tel: 029-88460756 E-mail: qiuhua@nwpu.edu.cn;王玮 男, 博士。主要研究方向: 燃气轮机燃烧室燃烧与流动。 E-mail: wweiyeah@163.com;范玮 女, 博士, 教授, 博士生导师。主要研究方向: 动力装置中的燃烧问题, 爆震燃烧, 脉冲爆震发动机应用基础研究, 燃烧理论, 燃烧诊断技术。 Tel: 029-88492748 E-mail: weifan419@nwpu.edu.cn;熊姹 女, 博士, 讲师。主要研究方向: 爆震燃烧, 脉冲爆震发动机应用基础研究, 燃烧诊断技术。 E-mail: xiongcha@nwpu.edu.cn

收稿日期: 2014-06-05

  修回日期: 2014-08-01

  网络出版日期: 2014-11-02

基金资助

国家自然科学基金 (50906072, 51306154); 中央高校基本科研业务费专项资金 (3102014JCY01003)

Experimental investigation on characteristics of deflagration to detonation transition in U-bend square tube

  • QIU Hua ,
  • WANG Wei ,
  • FAN Wei ,
  • XIONG Cha
Expand
  • School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2014-06-05

  Revised date: 2014-08-01

  Online published: 2014-11-02

Supported by

National Natural Science Foundation of China (50906072, 51306154); The Fundamental Research Funds for the Central Universities (3102014JCY01003)

摘要

以脉冲爆震发动机(PDE)用曲管爆震燃烧室为应用背景,对气相(乙烯/空气)燃烧波在U型方管实验器中的传播过程进行了实验研究。通过改变实验器中弯曲段进口气流入射激波强度,基于弯曲段内压力、波速的测量及高速摄影实验得到了U型方管实验器中半圆型弯段内的爆燃向爆震转变(DDT)特性。结果表明,弯曲段中DDT特性受到入射激波速度的影响:当入射激波速度小于794 m/s (43.6%VCJ,VCJ为理论Chapman-Jouguet爆震波速),在弯曲段内不能形成爆震;当入射激波速度介于870~908 m/s (47.8%VCJ~50.0%VCJ)之间,弯曲段内首先会产生局部爆炸,并最终形成爆震;当入射激波速度大于934 m/s (51.3%VCJ),爆燃波可以直接在弯曲段入口转化为爆震波。

本文引用格式

邱华 , 王玮 , 范玮 , 熊姹 . U型方管中爆燃向爆震转变特性实验研究[J]. 航空学报, 2015 , 36(6) : 1788 -1794 . DOI: 10.7527/S1000-6893.2014.0269

Abstract

For the application of the curved detonation combustor in pulse detonation engine (PDE), in this paper we present the results of experimental investigation on gaseous combustion wave of C2H4/Air mixture propagation through a U-bend square tube. By changing the incident shock wave speed at the entrance of the bend section in U-bend square tube, the characteristics of deflagration to detonation transition (DDT) in bend section have been researched based on the pressures/velocities measure and high speed photography. When the incident shock wave speed is lower than 794 m/s(43.6%VCJ), the detonation cannot form in the bend section; when the speed is between 870 m/s and 908 m/s(47.8%VCJ-50.0%VCJ), the hot spot will be formed firstly and then the detonation will form finally in the bend section; when the speed exceeds 934 m/s(51.3%VCJ), the deflagration wave will directly transit into a detonation at the entrance of bend section.

参考文献

[1] Fan W, Yan C J, Huang X Q, et al. Experimental investigation on two-phase pulse detonation engine[J]. Combustion and Flame, 2003, 133(4): 441-450.
[2] Roy G D, Frolov S M, Borisov A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective[J]. Progress in Energy and Combustion Science, 2004, 30(6): 545-672.
[3] Helfrich T M, Schauer F R. Ignition and detonation-initiation characteristics of hydrogen and hydrocarbon fuels in a PDE[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
[4] Austin J M, Shepherd J E. Detonations in hydrocarbon fuel blends[J]. Combustion and Flame, 2003, 132(1-2): 73-90.
[5] Brophy C M, Hanson R K. Fuel distribution effects on pulse detonation engine operation and performance[J]. Journal of Propulsion and Power, 2006, 22(6): 1155-1161.
[6] Wang W, Qiu H, Fan W, et al. Experimental study on spiral pulse detonation engines[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 12-16 (in Chinese). 王玮, 邱华, 范玮, 等. 螺旋式脉冲爆震发动机实验研究[J]. 实验流体力学, 2012, 26(2): 12-16.
[7] Wang C J, Xu S L, Guo C M. Experimental investigation on gaseous detonation propragation through a semi-circle bend tube[J]. Explosion and Shock Waves, 2003, 23(5): 448-453 (in Chinese). 王昌建, 徐胜利, 郭长铭. 气相爆轰波在半圆形弯管中传播现象的实验研究[J]. 爆炸与冲击, 2003, 23(5): 448-453.
[8] Yang Z, Zhou K Y, Xie L J, et al. Experimental study of flame transition in the "Z" type tube[J]. Fire Safety Science, 2006, 15(3): 111-115 (in Chinese). 杨志, 周凯元, 谢立军, 等. Z型管道中气体火焰传播规律的实验研究[J]. 火灾科学, 2006, 15(3): 111-115.
[9] Nakayama H, Moriya T, Kasahara J, et al. Stable detonation wave propagation in rectangular-cross-section curved channels[J]. Combustion and Flame, 2012, 159(2): 859-869.
[10] Nakayama H, Kasahara J, Matsuo A, et al. Front shock behavior of stable curved detonation waves in rectangular-cross-section curved channels[J]. Proceedings of the Combustion Institute, 2013, 34(2): 1939-1947.
[11] Zhou R, Wang J P. Numerical investigation of shock wave reflections near the head ends of rotating detonation engines[J]. Shock Waves, 2013, 23(5): 461-472.
[12] Frolov S M. Liquid-fueled air-breathing pulse detonation engines demonstrator: operation principles and performance[J]. Journal of Propulsion and Power, 2006, 22(6): 1162-1169.
[13] Frolov S M, Aksenov V S, Shamshin I O. Shock wave and detonation propagation through U-bend tubes[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2421-2428.
[14] Frolov S M. Fast deflagration-to-detonation transition[J]. Russian Journal of Physical Chemistry B, 2008, 2(3): 442-455.
[15] Wang W,Qiu H,Fan W,et al. Experimental study on DDT characteristics in spiral configuration pulse detonation engines[J]. International Journal of Turbo & Jet-Engines, 2013, 30(3): 261-270.

文章导航

/