超声速燃烧数值模拟中的湍流与化学反应相互作用模型
收稿日期: 2014-07-25
修回日期: 2014-10-31
网络出版日期: 2014-10-31
基金资助
中组部青年千人计划(第五批)
Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion
Received date: 2014-07-25
Revised date: 2014-10-31
Online published: 2014-10-31
Supported by
National Thousand Young Talent Program (5th batch), Organization Department of CPC, China
高精度数值模拟有助于理解超声速湍流燃烧中湍流与化学反应的相互作用,可为发动机燃烧室等工程应用设计提供可靠的预测模型。除直接数值模拟外,目前在湍流燃烧应用中使用的大涡模拟和雷诺平均Navier-Stokes模拟均需要借助模型模化发生在湍流小尺度上的流动与化学反应过程对湍流大尺度运动的影响。现有的湍流与化学反应相互作用模型大致可分为:火焰面类模型和概率密度函数类模型,2类模型在不同的应用中各自具有优势和局限性。此外,现有模型大都基于低马赫数燃烧,而超声速燃烧中通常会伴随快速混合、局部熄火和再着火以及激波等复杂过程,这为发展其中的湍流与化学反应相互作用模型提出了更多的挑战。
杨越 , 游加平 , 孙明波 . 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015 , 36(1) : 261 -273 . DOI: 10.7527/S1000-6893.2014.0239
The high-fidelity numerical simulation is considered as a useful approach to understand the turbulence-chemistry interactions in supersonic turbulent combustion and it can be used as a predictive model for engine design in engineering applications. In numerical simulations, large-eddy simulation and Reynolds averaged Navier-Stokes simulation require to model the effects of the motion and chemical reactions at small scales on large scale motions. The existing turbulence-chemistry interaction models can be classified into two types: the flamelet-like model and the probability density function model. Both types have their own advantages and weaknesses in different applications. In addition, most of the existing models are based on low-Mach-number combustion, while the supersonic combustion involves more complex processes such as rapid mixing, local extinctions/re-ignitions and shock waves, which pose significant challenges to the modeling of turbulence-chemistry interactions.
[1] Fry R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58.
[2] Yu G, Fan X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5): 449-471 (in Chinese). 俞刚, 范学军. 超声速燃烧与高超声速推进[J].力学进展, 2013, 43(5): 449-471.
[3] Wang Z G, Sun M B. Modeling and large eddy simulation of supersonic turbulent flow and combustion[M]. Beijing: Science Press, 2013: 3-4 (in Chinese). 王振国, 孙明波. 超声速湍流流动、燃烧的建模与大涡模拟[M]. 北京: 科学出版社, 2013: 3-4.
[4] Pope S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000: 335-343.
[5] Pitsch H. Large-eddy simulation of turbulent combustion[J]. Annual Review of Fluid Mechanics, 2006, 38(1): 453-482.
[6] Lu T F, Law C K. Toward accommodating realistic fuel chemistry in large-scale computations[J]. Progress in Energy and Combustion Science, 2009, 35(2): 192-215.
[7] Yoo C S, Richardson E S, Chen J H, et al. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1619-1627.
[8] Lu S Q, Fan J R, Luo K. High-fidelity resolution of the characteristic structures of a supersonic hydrogen jet flame with heated coflow air[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3528-3539.
[9] Pope S B. Small scales, many species and the manifold challenges of turbulent combustion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1-31.
[10] Yang Y, Wang H, Pope S B, et al. Large-eddy simulation/PDF modeling of a non-premixed CO/H2 temporally evolving jet flame[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1241-1249.
[11] Peters N. Turbulent combustion[M]. Cambridge: Cambridge University Press, 2000: 146-156.
[12] Pierce C D, Moin P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97.
[13] Klimenko A Y, Bilger R W. Conditional moment closure for turbulent combustion[J]. Progress in Energy and Combustion Science, 1999, 25(6): 595-687.
[14] Pope S B. PDF methods for turbulent reactive flows[J]. Progress in Energy and Combustion Science, 1985, 11(2): 119-192.
[15] Kerstein A R. A linear-eddy model of turbulent scalar transport and mixing[J]. Combustion Science and Technology, 1988, 60(4-6): 391-421.
[16] Kerstein A R. One-dimensional turbulence: model formulation and application to homogeneous turbulence, sheer flows, and buoyant stratified flows[J]. Journal of Fluid Mechanics, 1999, 392: 277-334.
[17] Klimenko A Y, Pope S B. The modeling of turbulent reactive flows based on multiple mapping conditioning[J]. Physics of Fluids, 2003, 15(7): 1907-1925.
[18] Cleary M J, Kronenburg A. Multiple mapping conditioning for extinction and reignition in turbulent diffusion flames[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1497-1505.
[19] Waidmann W, Alff F, Bhhm M, et al. Supersonic combustion of hydrogen/air in a scramjet combustion chamber[J]. Space Technology, 1995, 15(6): 421-429.
[20] Laurence S J, Schramm J M, Karl S, et al. An experimental investigation of steady and unsteady combustion phenomena in the Hyshot II combustor, AIAA-2011-2310[R]. Reston: AIAA, 2011.
[21] Larsson J. Large eddy simulation of the Hyshot II scramjet combustor using a supersonic flamelet model, AIAA-2012-4261[R]. Reston: AIAA, 2012.
[22] Micka D J, Driscoll J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404.
[23] Gamba M, Miller V A, Hanson R K, et al. Ignition and flame structure in a compact inlet/scramjet combustor model, AIAA-2011-2366[R]. Reston: AIAA, 2011.
[24] Gamba M, Miller V A, Hanson R K, et al. Combustion characteristics of an inlet/supersonic combustor model, AIAA-2012-0612[R]. Reston: AIAA, 2012.
[25] Gamba M, Terrapon V E, Pitsch H, et al. Assessment of the combustion characteristics of hydrogen transverse jets in supersonic crossflow[R]. Washington, D.C.: NASA, 2011: 259-272.
[26] Luo K H. Combustion effects on turbulence in a partially premixed supersonic diffusion flame[J]. Combustion and Flame, 1999, 119(4): 417-435.
[27] Fureby C. LES for supersonic combustion, AIAA-2012-5979[R]. Reston: AIAA, 2012.
[28] Williams F A. Recent advances in theoretical description of turbulent diffusion flames[C]//Turbulent Mixing in Nonreactive and Reactive Flows. New York: Springer, 1975: 189-208.
[29] Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science, 1984, 10(3): 319-339.
[30] Ihme M, Pitsch H. Prediction of extinction and reignition in non-premixed turbulent flames using a flamelet/progress variable model: a priori study and presumed PDF closure[J]. Combustion and Flame, 2008, 155(1): 70-89.
[31] Ihme M, Pitsch H. Prediction of extinction and reignition in non-premixed turbulent flames using a flamelet/progress variable model: application in LES of Sandia flames D and E[J]. Combustion and Flame, 2008, 155(1): 90-107.
[32] Mauss F, Keller D, Peters N. A Lagrangian simulation of flamelet extinction and reignition in turbulent jet diffusion flames[J]. Proceedings of the Combustion Institute, 1991, 23(1): 693-698.
[33] Pitsch H, Barths H, Peters N. Three-dimensional modeling of NOx and soot formation in DI-diesel engines using detailed chemistry based on the interactive flamelet approach[J]. SAE Transactions, 1996, 105(4): 2010-2024.
[34] Pitsch H, Chen M, Peters N. Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames[J]. Proceedings of the Combustion Institute, 1998, 27(1): 1057-1064.
[35] Consul R, Oliva A C D. Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames[J]. Combustion and Flame, 2008, 153(1): 71-83.
[36] Hasse C, Peters N. A two mixture fraction flamelet model applied to split injections in a di diesel engine[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2755-2762.
[37] Boileau M, Staffelbach G, Cuenot B, et al. LES of an ignition sequence in a gas turbine engine[J]. Combustion and Flame, 2008, 154(1): 2-22.
[38] Mueller M E, Pitsch H. Large eddy simulation of soot evolution in an aircraft combustor[J]. Physics of Fluids, 2013, 25(11): 110812.
[39] Knudsen E, Pitsch H. A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion[J]. Combustion and Flame, 2009, 156(3): 678-696.
[40] Knudsen E, Pitsch H. Capabilities and limitations of multi-regime flamelet combustion models[J]. Combustion and Flame, 2012, 159(1): 242-264.
[41] Domingo P, Vervisch L, Veynante D. Auto-ignition and flame propagation effects in LES of burned gases diluted turbulent combustion[C]//Proceedings of the Summer Program. 2006: 337.
[42] Yang Y, Pope S B, Chen J H. Empirical low-dimensional manifolds in composition space[J]. Combustion and Flame, 2013, 160(10): 1967-1980.
[43] Williams F A. Progress in knowledge of flamelet structure and extinction[J]. Progress in Energy and Combustion Science, 2000, 26(4): 657-682.
[44] Sun M B, Fan Z Q, Liang J H, et al. Evaluation of partially premixed flamelet approach in supersonic combustion[J]. Advances in Mechanics, 2010, 46(6): 634-644 (in Chinese). 孙明波, 范周琴, 梁剑寒, 等. 部分预混超声速燃烧火焰面模式研究综述[J]. 力学进展, 2010, 46(6): 634-644.
[45] Sabel'nikov V, Deshaies B, Figueira L F, et al. Revisited flamelet model for non-premixed combustion in supersonic turbulent flows[J]. Combustion and Flame, 1998, 114(3): 577-584.
[46] Zheng L L, Bray K N C. The application of new combustion and turbulence models to H2-air non-premixed supersonic combustion[J]. Combustion and Flame, 1994, 99(2): 440-448.
[47] Oevermann M. Numerical investigation of turbulent hydrogen combustion in a scramjet using flamelet modeling[J]. Aerospace Science and Technology, 2000, 4(7): 463-480.
[48] Gao Z X, Lee C H. A flamelet model for turbulent diffusion combustion in supersonic flow[J]. Science China Technological Sciences, 2010, 53(12): 3379-3388.
[49] Berglund M, Fureby C. LES of supersonic combustion in a scramjet engine model[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2497-2504.
[50] Hou L Y, Niu D S, Ren Z Y. Partially premixed flamelet modeling in a hydrogen fueled supersonic combustor[J]. International Journal of Hydrogen Energy, 2014, 39(17): 9497-9504.
[51] Sun M B. Investigation of flows and mechanisms of stabilization of a flameholding cavity in supersonic flow[D]. Changsha: National University of Defence Technology, 2008 (in Chinese). 孙明波. 超声速来流稳焰凹腔的流动及火焰稳定机制研究[D]. 长沙: 国防科学技术大学, 2008.
[52] Terrapon V E, Ham F, Pitsch H, et al. A flamelet-based model for supersonic combustion[R]. Washington, D.C.: NASA, 2009: 47-58.
[53] Fureby C, Chapuis M, Karl S, et al. CFD analysis of the HyShot II scramjet combustor[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2399-2405.
[54] Pecnik R, Terrapon V E, Pitsch H, et al. Reynolds-averaged Navier-Stokes simulations of the Hyshot II scramjet[J]. AIAA Journal, 2012, 50(8): 1717-1732.
[55] Saghafian A, Terrapon V E, Pitsch H, et al. An efficient flamelet-based combustion model for supersonic flows, AIAA-2011-2267[R]. Reston: AIAA, 2011.
[56] Hiremath V, Lantz S R, Pope S B, et al. Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion[J]. Combustion and Flame, 2012, 159(10): 3096-3109.
[57] Ren Z Y, Pope S B. An investigation of the performance of turbulent mixing models[J]. Combustion and Flame, 2004, 136(1): 208-216.
[58] Pope S B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation[J]. Combustion Theory Modelling, 1997, 1(1): 41-63.
[59] Zeman O. Dilatation dissipation: the concept and application in modeling compressible mixing layers[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(2): 178-188.
[60] Sarkar S, Erlebacher G, Kreiss H, et al. The analysis and modeling of dilatational terms in compressible turbulence[J]. Journal of Fluid Mechanics, 1991, 227: 473-493.
[61] Eifler P, Kollmann W. PDF prediction of supersonic hydrogen flames, AIAA-1993-0448[R]. Reston: AIAA, 1993.
[62] Delarue B J, Pope S B. Application of PDF methods to compressible turbulent flows[J]. Physics of Fluids, 1997, 9(9): 2704-2715.
[63] Delarue B J, Pope S B. Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods[J]. Physics of Fluids, 1998, 10(2): 487-498.
[64] Mbus H, Gerlinger P, Bruggemann D. Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion[J]. Combustion and Flame, 2003, 132(1): 3-24.
[65] Fox R O. Computational models for turbulent reacting flows[M]. Cambridge: Cambridge University Press, 2003: 265-266.
[66] Wang H B, Qin N, Wang M Z G, et al. A hybrid LES (large eddy simulation)/assumed sub-grid PDF (probability density function) model for supersonic turbulent combustion[J]. Science China Technological Sciences, 2011, 54(10): 2694-2707.
[67] Frankel S H, Hassan H A, Drummond J P. A hybrid Reynolds averaged/PDF closure model for supersonic turbulent combustion, AIAA-1990-1573[R]. Reston: AIAA, 1990.
[68] Forster H, Sattelmayer T. Validity of an assumed PDF combustion model for scramjet applications, AIAA-2008-2585[R]. Reston: AIAA, 2008.
[69] Baurle R A, Girimaji S S. Assumed PDF turbulence-chemistry closure with temperature composition correlations[J]. Combustion and Flame, 2003, 134(1): 131-148.
[70] Tang Q, Zhao W, Fox R O, et al. Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics[J]. Combustion Theory and Modelling, 2007, 11(6): 889-907.
[71] Valio L. A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow[J]. Flow, Turbulence and Combustion, 1998, 60(2): 157-172.
[72] Sabel'nikov V, Soulard O. Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars[J]. Physical Review E, 2005, 72(1): 016301.
[73] Koo H, Donde P, Raman V. A quadrature-based LES/transported probability density function approach for modeling supersonic combustion[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2203-2210.
[74] Donde P, Koo H, Raman V. A multivariate quadrature based moment method for LES based modeling of supersonic combustion[J]. Journal of Computational Physics, 2012, 231(17): 5805-5821.
[75] Koo H, Donde P, Raman V. LES-based Eulerian PDF approach for the simulation of scramjet combustors[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2093-2100.
/
〈 | 〉 |